EBOOK - Systems Engineering - Design Principles and Models (Dahai Liu)


With more complex systems being designed and utilized, understanding concepts of systems and mastering systems engineering methods are of utmost importance for systems designers. Complexity exists in all levels of systems and their subsystems, even components, which makes the design challenging.
Guided by systems science, systems engineering applies scientific theories and models and incorporates the factors of system elements, including humans, machines, and environments, into unified models To analyze the effects  of various system elements on system behaviors, which, in turn, seek the optimal course of actions to design these complex systems.
Systems engineering is multidisciplinary in nature, integrating concepts, models, and techniques from a number of disciplines, including natural science, social science, and engineering, at both basic research and applied research levels.
For the past several decades, systems engineering has grown rapidly in its scope and application and shown significant benefits for the design of large, complex systems. I  have  been  educating  systems  engineers for over  ten  years,  teaching
systems engineering at both  undergraduate  and  graduate  levels. My students are different from most systems engineering majors, as these undergraduate  and  graduate  students  have  backgrounds  in  a  large  variety  of areas, including psychology, physiology, and some engineering fields.
With my experience teaching students with a variety of backgrounds, I feel that a textbook in systems engineering targeted at nontraditional engineers is in demand.
The current systems engineering textbooks are either too technical or  at  a  high  conceptual  level,  giving  these  students  very  limited  choices. Students need a good book that not only gives them exposure to the concepts of systems and systems engineering, but also enough technical expertise for them to use and apply what they learn on the job. That is the rationale for developing this book.

This book is written primarily for students with diverse backgrounds to learn about systems and systems engineering, and, more specifically, to be able to use and apply the models and methods in the systems engineering field. The materials included in the book have been taught for many years in the Human Factors and Systems Department at Embry-Riddle Aeronautical University; it has integrated feedback from students and colleagues and is written at a level appropriate for those groups of students to learn systems engineering, especially those nonengineering students who have no prior exposure  to  this  subject.  Engineering  students, on  the  other  hand,  may also find this book useful and handy, as it provides a comprehensive overview of the subjects as well as the relevant analysis models and techniques.
This book should serve well as a reference book for professional systems engineers.
This book has ten chapters, organized in three parts, including systems and  systems  engineering  concepts  (Chapters  1  and  2), systems  methods, models,  and  analytical  techniques  (Chapters  3  through 9),  and  systems management and control methods (Chapter 10). The approach leans toward process-oriented and model-based systems engineering, with necessary topics covered in different chapters.
Chapter 2 describes the system life cycle and systems engineering design process. Systems design starts with requirements; beginning with a good set of requirements is critical for the success of the design, and developing and analyzing requirements are not usually covered by a systems engineering book; that is why Chapter 3 is dedicated to this subject.
 It is believed that students will have a solid understanding of system requirements after having read this detailed information; a software package (CORE) is also used to introduce the requirement management process.
Chapter 4 describes the design process in greater detail, especially the functional  models.  Chapters  5  through  9  explain  the  necessary  technical measures and models that most systems designs will involve, including reliability,  maintainability,  supportability,  usability  (human  factors),  decisionmaking models under risks and uncertainty, optimization models, process models  (queuing  models  and  simulation  with  Arena  software),  and  cost analysis using engineering economy models.
The last chapter (Chapter 10) gives a comprehensive overview of systems management based on systems engineering management plans (SEMP) and systems control based on critical path method (CPM) and program evaluation review technique (PERT) models.
In terms of the mathematics involved, it is believed that no specific prerequisite requirements are needed, except for fundamental algebra and basic  probability  and  statistics  theory;  Appendix I is  provided  at  the  end of  the  book  for  readers  to  review  these  materials.  This book  can  be  used as a textbook at either undergraduate upper-level or graduate starting-level courses; exercise problems are provided at the end of each chapter for students to gain hands-on experience with the concepts.
I thank each individual who has encouraged me and assisted me in the process  of  writing  this  book.  Specifically,  I  would  like  to  thank  Meaghan Hart, Julian Archer, and Hemali Virani for their assistance in preparing this book. Special thanks go to the senior editor Cindy Carelli, project coordinator Laurie Oknowsky, project editor Richard Tressider, and Michele Smith of CRC Press for their assistance, advice, and support throughout the process. I would also like to thank Katie Thacker and Bethany Maddox of Vitech Corporation and Jon D. Santavy of Rockwell Automation for their cooperation with the project. And finally, I want to express my appreciation to my family; their love and support are the inspiration for my career.

Section I  Systems and Systems Engineering Concepts
1. Introduction: Systems and Systems Engineering ....................................3
1.1  Systems ...................................................................................................3
1.2  Systems Classification ..........................................................................6
1.2.1  Natural Systems versus Man-Made Systems .......................6
1.2.2  Static Systems versus Dynamic Systems ..............................7
1.2.3  Conceptual Systems versus Physical Systems .....................7
1.2.4  Open Systems versus Closed Systems ..................................8
1.3  Systems Engineering ............................................................................9
1.4  Brief History of Systems Engineering ..............................................12
1.4.1  From Reductionism to System Thinking ...........................13
1.4.2  Early Practices ........................................................................14
1.4.3  Government Role ...................................................................14
1.4.4  Information Age .....................................................................16
1.5  Summary ..............................................................................................17
2. Systems Life Cycle and Design Processes ...............................................19
2.1  System Life Cycle ................................................................................20
2.1.1  Operational Need ..................................................................21
2.1.2  System Concept ......................................................................23
2.1.3  Systems Concept Exploration and Validation ....................25
2.1.4  Engineering Model Development .......................................26
2.1.5  System Production, Distribution, and Deployment ..........27
2.1.6  System Operations and Maintenance .................................27
2.1.7  System Phase-Out and Retirement .....................................28
2.2  Systems Engineering Processes ........................................................29
2.2.1  Definition of Systems Engineering Process .......................29
2.2.2  Basic Concepts and Terminologies for Design Process ....30
2.2.3  Systems User Classes.............................................................33
2.3  Systems Engineering Design Processes ...........................................35
2.3.1  Conceptual Design ................................................................35
2.3.1.1  Identification of Needs ..........................................37
2.3.1.2  Feasibility Analysis ................................................38
2.3.1.3  System Planning .....................................................41
2.3.1.4  Requirement Analysis ...........................................43
2.3.1.5  Functional Analysis at the Systems Level ..........45
2.3.1.6  System Specification Type A .................................49
2.3.1.7  Conceptual Design Review and Evaluation .......50
2.3.2  Preliminary Design ...............................................................51
2.3.2.1  Functional Analysis and Function Allocation .....55
2.3.2.2  Design Tools and Analytical Models ..................58
2.3.2.3  Design Reviews ......................................................60
2.3.3  Detailed Design ......................................................................61
2.3.3.1  Detailed Design Requirements and
Specifications ..........................................................61
2.3.3.2  CAD Tools and Prototypes in Detailed Design ...62
2.3.3.3  Component Selection .............................................64
2.3.3.4  Detailed Design Review ........................................66
2.3.4 System Installation and Deployment, Operation, and
Maintenance...........................................................................67
2.4  System Engineering Design Process Models ..................................68
2.4.1  Waterfall Model ......................................................................69
2.4.2  Spiral Model............................................................................70
2.4.3  Vee Model................................................................................72
2.5  Summary ..............................................................................................73
Section II Systems Methods, Models, and Analytical
Techniques
3. Systems Requirement Analysis .................................................................77
3.1  What Is a System Requirement? .......................................................78
3.1.1  Types of Requirements ..........................................................80
3.2  Characteristics of Systems Requirements........................................81
3.3  Requirements Capture Technique ....................................................84
3.4  Requirements Analysis (RA) .............................................................91
3.4.1  Affinity Diagram ...................................................................92
3.4.2  Scenarios and Use Cases .......................................................94
3.4.3  Quality Function Deployment (QFD) .................................96
3.5  Requirements Management ............................................................100
3.5.1  What Is Requirements Management? ...............................100
3.5.2  Why Requirements Management? ....................................102
3.5.3  Requirements Management Using CORE ........................104
3.5.3.1  Requirements Management Software Tools ....104
3.5.3.2  Requirements Management Example Using CORE
3.6  Summary ............................................................................................108
4. Functional Analysis and System Design Models ................................111
4.1  What Is a Model? ...............................................................................112
ix Contents
4.1.1  Characteristics of Systems Models ....................................114
4.2  Model Categorization .......................................................................114
4.2.1  Classification Based on Model Format .............................114
4.2.1.1  Physical Models ....................................................114
4.2.1.2  Analogue Models .................................................114
4.2.1.3  Schematic Models .................................................115
4.2.1.4  Mathematical Models ..........................................115
4.2.2  Classification Based on the Nature of the Variables .......116
4.2.2.1  Deterministic Models ..........................................116
4.2.2.2  Stochastic Models .................................................117
4.2.3  Other Types of System Model Classification ...................117
4.3  System Design Models .....................................................................119
4.3.1  Functional Models ...............................................................121
4.3.1.1  What Is a Function? ..............................................122
4.3.1.2  Functional Flow Block Diagram (FFBD) ...........124
4.3.2  Functional Allocation ..........................................................133
4.3.2.1  Resource Requirements for Functions ..............134
4.3.2.2  Allocation of TPMs ..............................................135
4.3.2.3  A CORE Example of Detailed Functional
Analysis .................................................................138
4.3.3  Task Analysis Model ...........................................................140
4.3.3.1  Input Requirements .............................................141
4.3.3.2  Procedure ..............................................................141
4.3.3.3  Output Product .....................................................141
4.3.4  Timeline Analysis Model ....................................................144
4.3.5  Link Analysis Based on the Network and Graph
Model .....................................................................................144
4.3.5.1  Input .......................................................................145
4.3.5.2  Procedure ..............................................................145
4.3.6  Center of Gravity Model for Facility Location Planning ...150
4.4  Summary ............................................................................................154
5. System Technical Performance Measures .............................................159
5.1  Technical Performance Measures (TPMs) .....................................160
5.2  Systems Reliability ............................................................................161
5.2.1  Reliability Definition ...........................................................161
5.2.2  Mathematical Formulation of Reliability .........................163
5.2.2.1  Reliability Function ..............................................163
5.2.2.2  Failure Rate and Hazard Function ....................164
5.2.2.3  Reliability with Independent Failure Event .....169
5.2.3  Reliability Analysis Tools: FMEA and Faulty Trees .......178
5.2.3.1  Failure Mode Effect Analysis (FMEA) ..............179
5.2.3.2  Faulty Tree Analysis (FTA) .................................185
5.3  System Maintainability ....................................................................192
5.3.1  Maintainability Definition ..................................................193
5.3.2  Measures of System Maintainability ................................194
5.3.2.1  Mean Corrective Time (Mct) ................................194
5.3.2.2  Preventive Maintenance Time (Mpt) ...................197
5.3.2.3  Mean Active Maintenance Time (M) .................197
5.3.2.4  Mean Down Time (MDT) ....................................198
5.3.3  System Availability ..............................................................198
5.3.4  System Design for Maintainability ...................................200
5.4  System Supportability ......................................................................203
5.4.1  Definition of Supportability ...............................................203
5.4.2  Supply Chain and System Supportability ........................205
5.4.3  Inventory Management: EOQ Model ................................207
5.4.3.1  Ordering and Setup Cost ....................................207
5.4.3.2  Unit Purchasing Cost ...........................................207
5.4.3.3  Unit Holding Cost ................................................208
5.5  Human Factors and Usability Engineering ..................................211
5.5.1  Definition of Human Factors..............................................212
5.5.2  Work System Design ............................................................216
5.5.3  Application of Anthropometric Data ................................218
5.5.4  Usability Engineering .........................................................226
5.6  Summary ............................................................................................231
6. Decision-Making Models in Systems Engineering ............................237
6.1  Elements of Decision Making .........................................................238
6.2  Decision-Making Models under Risks and Uncertainty ............240
6.2.1  Decision Making under Uncertainty ................................241
6.2.1.1  Laplace Criterion ..................................................242
6.2.1.2  Maximax Criterion ...............................................242
6.2.1.3  Maximin Criterion ...............................................243
6.2.1.4  Hurwicz Criterion ................................................244
6.2.1.5  Minimax Regret ....................................................244
6.3  Decision Making under Risks .........................................................245
6.4  Utility Theory ....................................................................................246
6.5  Decision Tree .....................................................................................256
6.5.1  Expected Value of Sample Information ............................261
6.5.2  Expected Value of Perfect Information .............................261
6.6  Decision Making for Multiple Criteria: AHP Model ...................262
6.6.1  AHP Algorithms ..................................................................265
6.7  Summary ............................................................................................276
7. System Optimization Models ..................................................................281
7.1  What Is Optimization? .....................................................................282
7.2  Unconstrained Optimization Models ............................................283
7.2.1  Derivatives and Rate of Change ........................................283
7.3 Constrained Optimization Model Using Mathematical
Programming....................................................................................291
7.3.1  Linear Programming ...........................................................292
7.3.1.1  Formulation ...........................................................293
7.3.1.2  Solving LP Models Using Graphical Method ....296
7.3.1.3  Simplex Algorithm ...............................................302
7.3.2  Solving LP Using a Spreadsheet ........................................310
7.3.2.1  Step 1. Activation of Solver Function in Excel ...310
7.3.2.2  Step 2. Set-Up of LP Model in Excel ..................312
7.3.2.3  Step 3. Solving the LP Model ..............................312
7.4  Summary ............................................................................................313
8. Process Modeling Using Queuing Theory and Simulation ..............319
8.1  Basic Queuing Theory ......................................................................320
8.1.1  Queuing System ...................................................................320
8.1.1.1  Arrival Process .....................................................321
8.1.1.2  Queue .....................................................................322
8.1.1.3  Service Process .....................................................323
8.1.2  M/M/1 Queuing System .....................................................325
8.1.2.1  Exponential Time Arrival and Poisson
Process ...................................................................325
8.1.2.2  Birth-Death Process .............................................328
8.1.2.3  Measures of M/M/1 Queue ................................333
8.1.3  Multiserver Queuing Systems ...........................................337
8.1.4  Queuing Systems with Finite Population.........................341
8.2  Application of Queuing Theory ......................................................345
8.3 Queuing System Analysis Using Discrete Event Simulation (DES)...347
8.3.1  Introduction to Simulation .................................................348
8.3.2  Discrete Event Simulation (DES) .......................................349
8.3.3  Data Analysis Using Goodness of Fit ...............................350
8.3.4  DES Model Using Arena .....................................................353
8.3.4.1  Entity ......................................................................354
8.3.4.2  Attribute ................................................................354
8.3.4.3  Resources ...............................................................354
8.3.4.4  Queue .....................................................................354
8.3.4.5  Variable ..................................................................354
8.3.4.6  Step 1: Generate Parts Arrival and Assign
Parts Attributes .....................................................357
8.3.4.7  Step 2: Drilling Process .......................................358
8.3.4.8  Step 3: Decide for Rework ...................................359
8.3.4.9  Step 4: Collect Time in System and System
Exit ..........................................................................360
8.3.4.10  Step 5: Execute the Model and Obtain Results ....361
8.4  Summary ............................................................................................361
9. Engineering Economy in Systems Engineering ...................................367
9.1  Interests and Time Value of Money ................................................368
9.2  Economic Equivalence ......................................................................369
9.2.1  Present Value (P) and Future Value (F) .............................370
9.2.2  Annual Value (A) and Future Value (F) ............................371
9.2.3  Annual Value (A) and Present Value (P) ...........................373
9.3  Decision Making Using Interest Formula .....................................376
9.3.1  Present Value, Future Value, and Annual Value
Comparison ..........................................................................378
9.3.1.1  Present Value Equivalence (PE) Criterion .........378
9.3.1.2  Future Value Equivalence (FE) Criterion ..........380
9.3.1.3  Annual Value Equivalence (AE) Criterion ........380
9.3.2  Rate of Return .......................................................................381
9.4  Break-Even Analysis .........................................................................384
9.4.1  Cost Volume Break-Even Analysis ....................................384
9.4.2  Rent-or-Buy Break-Even Analysis .....................................385
9.5  Summary ............................................................................................386
Section III  Systems Management and Control Methods
10. Systems Management and Control .........................................................391
10.1  Systems Management Planning ......................................................391
10.1.1  Engineering Design Project Management and
Design Teams .......................................................................391
10.2  Systems Engineering Management Plan (SEMP) .........................393
10.2.1  Cover Page .............................................................393
10.2.2  Table of Contents ..................................................394
10.2.3  Scope of Project .....................................................394
10.2.4  Applicable Documents ........................................394
10.2.5  Systems Engineering Process .............................394
10.2.6  Transitioning Critical Technologies ...................397
10.2.7  Systems Integration Efforts .................................397
10.2.8  Additional Activities ............................................399
10.2.9  Appendices ............................................................399
10.2.10  Systems Engineering Master Scheduling .........399
10.3  Systems Control Models...................................................................400
10.3.1  Critical Path Method (CPM) ...............................................400
10.3.2  Program Evaluation and Review Technique (PERT) ......407
10.4  Summary ............................................................................................411

LINK DOWNLOAD


With more complex systems being designed and utilized, understanding concepts of systems and mastering systems engineering methods are of utmost importance for systems designers. Complexity exists in all levels of systems and their subsystems, even components, which makes the design challenging.
Guided by systems science, systems engineering applies scientific theories and models and incorporates the factors of system elements, including humans, machines, and environments, into unified models To analyze the effects  of various system elements on system behaviors, which, in turn, seek the optimal course of actions to design these complex systems.
Systems engineering is multidisciplinary in nature, integrating concepts, models, and techniques from a number of disciplines, including natural science, social science, and engineering, at both basic research and applied research levels.
For the past several decades, systems engineering has grown rapidly in its scope and application and shown significant benefits for the design of large, complex systems. I  have  been  educating  systems  engineers for over  ten  years,  teaching
systems engineering at both  undergraduate  and  graduate  levels. My students are different from most systems engineering majors, as these undergraduate  and  graduate  students  have  backgrounds  in  a  large  variety  of areas, including psychology, physiology, and some engineering fields.
With my experience teaching students with a variety of backgrounds, I feel that a textbook in systems engineering targeted at nontraditional engineers is in demand.
The current systems engineering textbooks are either too technical or  at  a  high  conceptual  level,  giving  these  students  very  limited  choices. Students need a good book that not only gives them exposure to the concepts of systems and systems engineering, but also enough technical expertise for them to use and apply what they learn on the job. That is the rationale for developing this book.

This book is written primarily for students with diverse backgrounds to learn about systems and systems engineering, and, more specifically, to be able to use and apply the models and methods in the systems engineering field. The materials included in the book have been taught for many years in the Human Factors and Systems Department at Embry-Riddle Aeronautical University; it has integrated feedback from students and colleagues and is written at a level appropriate for those groups of students to learn systems engineering, especially those nonengineering students who have no prior exposure  to  this  subject.  Engineering  students, on  the  other  hand,  may also find this book useful and handy, as it provides a comprehensive overview of the subjects as well as the relevant analysis models and techniques.
This book should serve well as a reference book for professional systems engineers.
This book has ten chapters, organized in three parts, including systems and  systems  engineering  concepts  (Chapters  1  and  2), systems  methods, models,  and  analytical  techniques  (Chapters  3  through 9),  and  systems management and control methods (Chapter 10). The approach leans toward process-oriented and model-based systems engineering, with necessary topics covered in different chapters.
Chapter 2 describes the system life cycle and systems engineering design process. Systems design starts with requirements; beginning with a good set of requirements is critical for the success of the design, and developing and analyzing requirements are not usually covered by a systems engineering book; that is why Chapter 3 is dedicated to this subject.
 It is believed that students will have a solid understanding of system requirements after having read this detailed information; a software package (CORE) is also used to introduce the requirement management process.
Chapter 4 describes the design process in greater detail, especially the functional  models.  Chapters  5  through  9  explain  the  necessary  technical measures and models that most systems designs will involve, including reliability,  maintainability,  supportability,  usability  (human  factors),  decisionmaking models under risks and uncertainty, optimization models, process models  (queuing  models  and  simulation  with  Arena  software),  and  cost analysis using engineering economy models.
The last chapter (Chapter 10) gives a comprehensive overview of systems management based on systems engineering management plans (SEMP) and systems control based on critical path method (CPM) and program evaluation review technique (PERT) models.
In terms of the mathematics involved, it is believed that no specific prerequisite requirements are needed, except for fundamental algebra and basic  probability  and  statistics  theory;  Appendix I is  provided  at  the  end of  the  book  for  readers  to  review  these  materials.  This book  can  be  used as a textbook at either undergraduate upper-level or graduate starting-level courses; exercise problems are provided at the end of each chapter for students to gain hands-on experience with the concepts.
I thank each individual who has encouraged me and assisted me in the process  of  writing  this  book.  Specifically,  I  would  like  to  thank  Meaghan Hart, Julian Archer, and Hemali Virani for their assistance in preparing this book. Special thanks go to the senior editor Cindy Carelli, project coordinator Laurie Oknowsky, project editor Richard Tressider, and Michele Smith of CRC Press for their assistance, advice, and support throughout the process. I would also like to thank Katie Thacker and Bethany Maddox of Vitech Corporation and Jon D. Santavy of Rockwell Automation for their cooperation with the project. And finally, I want to express my appreciation to my family; their love and support are the inspiration for my career.

Section I  Systems and Systems Engineering Concepts
1. Introduction: Systems and Systems Engineering ....................................3
1.1  Systems ...................................................................................................3
1.2  Systems Classification ..........................................................................6
1.2.1  Natural Systems versus Man-Made Systems .......................6
1.2.2  Static Systems versus Dynamic Systems ..............................7
1.2.3  Conceptual Systems versus Physical Systems .....................7
1.2.4  Open Systems versus Closed Systems ..................................8
1.3  Systems Engineering ............................................................................9
1.4  Brief History of Systems Engineering ..............................................12
1.4.1  From Reductionism to System Thinking ...........................13
1.4.2  Early Practices ........................................................................14
1.4.3  Government Role ...................................................................14
1.4.4  Information Age .....................................................................16
1.5  Summary ..............................................................................................17
2. Systems Life Cycle and Design Processes ...............................................19
2.1  System Life Cycle ................................................................................20
2.1.1  Operational Need ..................................................................21
2.1.2  System Concept ......................................................................23
2.1.3  Systems Concept Exploration and Validation ....................25
2.1.4  Engineering Model Development .......................................26
2.1.5  System Production, Distribution, and Deployment ..........27
2.1.6  System Operations and Maintenance .................................27
2.1.7  System Phase-Out and Retirement .....................................28
2.2  Systems Engineering Processes ........................................................29
2.2.1  Definition of Systems Engineering Process .......................29
2.2.2  Basic Concepts and Terminologies for Design Process ....30
2.2.3  Systems User Classes.............................................................33
2.3  Systems Engineering Design Processes ...........................................35
2.3.1  Conceptual Design ................................................................35
2.3.1.1  Identification of Needs ..........................................37
2.3.1.2  Feasibility Analysis ................................................38
2.3.1.3  System Planning .....................................................41
2.3.1.4  Requirement Analysis ...........................................43
2.3.1.5  Functional Analysis at the Systems Level ..........45
2.3.1.6  System Specification Type A .................................49
2.3.1.7  Conceptual Design Review and Evaluation .......50
2.3.2  Preliminary Design ...............................................................51
2.3.2.1  Functional Analysis and Function Allocation .....55
2.3.2.2  Design Tools and Analytical Models ..................58
2.3.2.3  Design Reviews ......................................................60
2.3.3  Detailed Design ......................................................................61
2.3.3.1  Detailed Design Requirements and
Specifications ..........................................................61
2.3.3.2  CAD Tools and Prototypes in Detailed Design ...62
2.3.3.3  Component Selection .............................................64
2.3.3.4  Detailed Design Review ........................................66
2.3.4 System Installation and Deployment, Operation, and
Maintenance...........................................................................67
2.4  System Engineering Design Process Models ..................................68
2.4.1  Waterfall Model ......................................................................69
2.4.2  Spiral Model............................................................................70
2.4.3  Vee Model................................................................................72
2.5  Summary ..............................................................................................73
Section II Systems Methods, Models, and Analytical
Techniques
3. Systems Requirement Analysis .................................................................77
3.1  What Is a System Requirement? .......................................................78
3.1.1  Types of Requirements ..........................................................80
3.2  Characteristics of Systems Requirements........................................81
3.3  Requirements Capture Technique ....................................................84
3.4  Requirements Analysis (RA) .............................................................91
3.4.1  Affinity Diagram ...................................................................92
3.4.2  Scenarios and Use Cases .......................................................94
3.4.3  Quality Function Deployment (QFD) .................................96
3.5  Requirements Management ............................................................100
3.5.1  What Is Requirements Management? ...............................100
3.5.2  Why Requirements Management? ....................................102
3.5.3  Requirements Management Using CORE ........................104
3.5.3.1  Requirements Management Software Tools ....104
3.5.3.2  Requirements Management Example Using CORE
3.6  Summary ............................................................................................108
4. Functional Analysis and System Design Models ................................111
4.1  What Is a Model? ...............................................................................112
ix Contents
4.1.1  Characteristics of Systems Models ....................................114
4.2  Model Categorization .......................................................................114
4.2.1  Classification Based on Model Format .............................114
4.2.1.1  Physical Models ....................................................114
4.2.1.2  Analogue Models .................................................114
4.2.1.3  Schematic Models .................................................115
4.2.1.4  Mathematical Models ..........................................115
4.2.2  Classification Based on the Nature of the Variables .......116
4.2.2.1  Deterministic Models ..........................................116
4.2.2.2  Stochastic Models .................................................117
4.2.3  Other Types of System Model Classification ...................117
4.3  System Design Models .....................................................................119
4.3.1  Functional Models ...............................................................121
4.3.1.1  What Is a Function? ..............................................122
4.3.1.2  Functional Flow Block Diagram (FFBD) ...........124
4.3.2  Functional Allocation ..........................................................133
4.3.2.1  Resource Requirements for Functions ..............134
4.3.2.2  Allocation of TPMs ..............................................135
4.3.2.3  A CORE Example of Detailed Functional
Analysis .................................................................138
4.3.3  Task Analysis Model ...........................................................140
4.3.3.1  Input Requirements .............................................141
4.3.3.2  Procedure ..............................................................141
4.3.3.3  Output Product .....................................................141
4.3.4  Timeline Analysis Model ....................................................144
4.3.5  Link Analysis Based on the Network and Graph
Model .....................................................................................144
4.3.5.1  Input .......................................................................145
4.3.5.2  Procedure ..............................................................145
4.3.6  Center of Gravity Model for Facility Location Planning ...150
4.4  Summary ............................................................................................154
5. System Technical Performance Measures .............................................159
5.1  Technical Performance Measures (TPMs) .....................................160
5.2  Systems Reliability ............................................................................161
5.2.1  Reliability Definition ...........................................................161
5.2.2  Mathematical Formulation of Reliability .........................163
5.2.2.1  Reliability Function ..............................................163
5.2.2.2  Failure Rate and Hazard Function ....................164
5.2.2.3  Reliability with Independent Failure Event .....169
5.2.3  Reliability Analysis Tools: FMEA and Faulty Trees .......178
5.2.3.1  Failure Mode Effect Analysis (FMEA) ..............179
5.2.3.2  Faulty Tree Analysis (FTA) .................................185
5.3  System Maintainability ....................................................................192
5.3.1  Maintainability Definition ..................................................193
5.3.2  Measures of System Maintainability ................................194
5.3.2.1  Mean Corrective Time (Mct) ................................194
5.3.2.2  Preventive Maintenance Time (Mpt) ...................197
5.3.2.3  Mean Active Maintenance Time (M) .................197
5.3.2.4  Mean Down Time (MDT) ....................................198
5.3.3  System Availability ..............................................................198
5.3.4  System Design for Maintainability ...................................200
5.4  System Supportability ......................................................................203
5.4.1  Definition of Supportability ...............................................203
5.4.2  Supply Chain and System Supportability ........................205
5.4.3  Inventory Management: EOQ Model ................................207
5.4.3.1  Ordering and Setup Cost ....................................207
5.4.3.2  Unit Purchasing Cost ...........................................207
5.4.3.3  Unit Holding Cost ................................................208
5.5  Human Factors and Usability Engineering ..................................211
5.5.1  Definition of Human Factors..............................................212
5.5.2  Work System Design ............................................................216
5.5.3  Application of Anthropometric Data ................................218
5.5.4  Usability Engineering .........................................................226
5.6  Summary ............................................................................................231
6. Decision-Making Models in Systems Engineering ............................237
6.1  Elements of Decision Making .........................................................238
6.2  Decision-Making Models under Risks and Uncertainty ............240
6.2.1  Decision Making under Uncertainty ................................241
6.2.1.1  Laplace Criterion ..................................................242
6.2.1.2  Maximax Criterion ...............................................242
6.2.1.3  Maximin Criterion ...............................................243
6.2.1.4  Hurwicz Criterion ................................................244
6.2.1.5  Minimax Regret ....................................................244
6.3  Decision Making under Risks .........................................................245
6.4  Utility Theory ....................................................................................246
6.5  Decision Tree .....................................................................................256
6.5.1  Expected Value of Sample Information ............................261
6.5.2  Expected Value of Perfect Information .............................261
6.6  Decision Making for Multiple Criteria: AHP Model ...................262
6.6.1  AHP Algorithms ..................................................................265
6.7  Summary ............................................................................................276
7. System Optimization Models ..................................................................281
7.1  What Is Optimization? .....................................................................282
7.2  Unconstrained Optimization Models ............................................283
7.2.1  Derivatives and Rate of Change ........................................283
7.3 Constrained Optimization Model Using Mathematical
Programming....................................................................................291
7.3.1  Linear Programming ...........................................................292
7.3.1.1  Formulation ...........................................................293
7.3.1.2  Solving LP Models Using Graphical Method ....296
7.3.1.3  Simplex Algorithm ...............................................302
7.3.2  Solving LP Using a Spreadsheet ........................................310
7.3.2.1  Step 1. Activation of Solver Function in Excel ...310
7.3.2.2  Step 2. Set-Up of LP Model in Excel ..................312
7.3.2.3  Step 3. Solving the LP Model ..............................312
7.4  Summary ............................................................................................313
8. Process Modeling Using Queuing Theory and Simulation ..............319
8.1  Basic Queuing Theory ......................................................................320
8.1.1  Queuing System ...................................................................320
8.1.1.1  Arrival Process .....................................................321
8.1.1.2  Queue .....................................................................322
8.1.1.3  Service Process .....................................................323
8.1.2  M/M/1 Queuing System .....................................................325
8.1.2.1  Exponential Time Arrival and Poisson
Process ...................................................................325
8.1.2.2  Birth-Death Process .............................................328
8.1.2.3  Measures of M/M/1 Queue ................................333
8.1.3  Multiserver Queuing Systems ...........................................337
8.1.4  Queuing Systems with Finite Population.........................341
8.2  Application of Queuing Theory ......................................................345
8.3 Queuing System Analysis Using Discrete Event Simulation (DES)...347
8.3.1  Introduction to Simulation .................................................348
8.3.2  Discrete Event Simulation (DES) .......................................349
8.3.3  Data Analysis Using Goodness of Fit ...............................350
8.3.4  DES Model Using Arena .....................................................353
8.3.4.1  Entity ......................................................................354
8.3.4.2  Attribute ................................................................354
8.3.4.3  Resources ...............................................................354
8.3.4.4  Queue .....................................................................354
8.3.4.5  Variable ..................................................................354
8.3.4.6  Step 1: Generate Parts Arrival and Assign
Parts Attributes .....................................................357
8.3.4.7  Step 2: Drilling Process .......................................358
8.3.4.8  Step 3: Decide for Rework ...................................359
8.3.4.9  Step 4: Collect Time in System and System
Exit ..........................................................................360
8.3.4.10  Step 5: Execute the Model and Obtain Results ....361
8.4  Summary ............................................................................................361
9. Engineering Economy in Systems Engineering ...................................367
9.1  Interests and Time Value of Money ................................................368
9.2  Economic Equivalence ......................................................................369
9.2.1  Present Value (P) and Future Value (F) .............................370
9.2.2  Annual Value (A) and Future Value (F) ............................371
9.2.3  Annual Value (A) and Present Value (P) ...........................373
9.3  Decision Making Using Interest Formula .....................................376
9.3.1  Present Value, Future Value, and Annual Value
Comparison ..........................................................................378
9.3.1.1  Present Value Equivalence (PE) Criterion .........378
9.3.1.2  Future Value Equivalence (FE) Criterion ..........380
9.3.1.3  Annual Value Equivalence (AE) Criterion ........380
9.3.2  Rate of Return .......................................................................381
9.4  Break-Even Analysis .........................................................................384
9.4.1  Cost Volume Break-Even Analysis ....................................384
9.4.2  Rent-or-Buy Break-Even Analysis .....................................385
9.5  Summary ............................................................................................386
Section III  Systems Management and Control Methods
10. Systems Management and Control .........................................................391
10.1  Systems Management Planning ......................................................391
10.1.1  Engineering Design Project Management and
Design Teams .......................................................................391
10.2  Systems Engineering Management Plan (SEMP) .........................393
10.2.1  Cover Page .............................................................393
10.2.2  Table of Contents ..................................................394
10.2.3  Scope of Project .....................................................394
10.2.4  Applicable Documents ........................................394
10.2.5  Systems Engineering Process .............................394
10.2.6  Transitioning Critical Technologies ...................397
10.2.7  Systems Integration Efforts .................................397
10.2.8  Additional Activities ............................................399
10.2.9  Appendices ............................................................399
10.2.10  Systems Engineering Master Scheduling .........399
10.3  Systems Control Models...................................................................400
10.3.1  Critical Path Method (CPM) ...............................................400
10.3.2  Program Evaluation and Review Technique (PERT) ......407
10.4  Summary ............................................................................................411

LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: