EBOOK - Laboratory production of cattle embryos 2nd Edition (I. Gordon)
*3,000 new references added since the first edition
*Gives information necessary to produce embryos totally through in vitro techniques
*Shows commercial applications of embryo and oocyte research
Cattle remain at the forefront of many new developments in reproductive technology and what can be done for the cow today will later be applicable to other farm livestock and perhaps humans. This new edition reviews the considerable advances and issues in embryo production technology, based on reports since the first edition in 1994. This is a must-have volume for those who own the first edition, and an incredibly informative text.
CONTENTS:
1 Developments in Embryoin VitroProduction (IVP) Technology1
1.1. Historical Aspects 1
1.1.1. Early IVF reports 1
1.1.2. Cattle IVF 1
1.2. Cambridge Contributions 3
1.2.1. School of Agriculture 3
1.2.2. Animal Research Station 3
Embryos across the Atlantic 4
Using rabbits to good effect 4
Dawn of cattle ET industry 5
1.2.3. Cambridge, Babraham and beyond 5
1.3. Irish Contributions 6
1.3.1. Early studies in cattle 7
1.3.2. Cattle twins by embryo transfer 8
1.3.3. Low-cost embryos 8
1.3.4. Commercializing the embryo production procedure 10
1.3.5. Commercial unacceptability 10
1.3.6. Towards sexed semen on the farm 12
1.4. Developments in ET Technology 13
1.4.1. Thirty years of progress 13
1.4.2. Current cattle ET activity 14
1.4.3. Commercial advantages of cattle ET 15
1.5. Laboratory-produced Embryos 15
1.5.1. Current level of activity 16
Ovum pick-up (OPU) 16
1.5.2. Research with bovine IVP embryos 17
1.5.3. Commercial use of IVP embryos 18
1.5.4. Pathogen-free IVP embryos 19
1.5.5. Animal health and welfare considerations 20
1.6. Embryo Production in Other Farm Mammals 20
1.6.1. Buffaloes 21
1.6.2. Horses 22
v
1.6.3. Pigs 26
1.6.4. Sheep and goats 28
1.6.5. Deer 30
1.6.6. Camelids 31
1.7. Humanin VitroFertilization 32
1.7.1. Historical aspects 32
1.7.2. Establishment of pregnancy by embryo transfer 33
1.7.3. Ovarian stimulation regimens for IVF 33
1.7.4. Recovery of human oocytes 34
1.7.5.In vitromaturation of human oocytes 34
1.7.6. Intracytoplasmic sperm injection (ICSI) 36
1.7.7. Early embryo culture 37
1.7.8. Assessing embryo quality 38
1.7.9. Cryopreservation of embryos and oocytes 39
Oocyte preservation 40
1.7.10. Gender preselection 40
2 The Bovine Oestrous Cycle and Associated Events 42
2.1. Oestrus and the Oestrous Cycle 42
2.1.1. Oestrus 42
2.1.2. Expression of heat 44
2.1.3. Aids to heat detection 44
2.1.4. Endocrine basis of oestrus 45
2.2. The Oestrous Cycle 46
2.2.1. Corpus luteum and progesterone 46
2.2.2. Follicular dynamics in the cow 49
Growing understanding of folliculogenesis 49
Zebu cattle 52
2.2.3. The dominant follicle 52
2.2.4. Monitoring ovarian activity 53
2.3. Endocrine Events in the Oestrous Cycle 55
2.3.1. Gonadotrophin release 55
2.3.2. Intraovarian events 56
2.4. Synchronizing Oestrus 56
2.4.1. Treatment regimens 56
2.5. Prenatal Development of the Bovine Ovary 58
2.5.1. Migration of primordial germ cells 59
2.5.2. Formation of oogonia 59
2.5.3. The primordial follicle 60
2.5.4. Activation of primordial follicles 61
2.5.5. Growth and development of follicles 61
2.5.6. Formation of the zona pellucida 62
2.5.7. Development of growing follicles 63
2.5.8. Antral follicles 63
2.5.9. Follicular atresia 64
2.6. The Bovine Ovary in Postnatal Life 64
2.6.1. The prepubertal animal 64
2.6.2. Antral follicle population 65
2.6.3. Follicle development 65
Granulosa cells 66
Thecal cells 67
Basement membrane 68
vi Contents
2.6.4. Oocyte growth and development 68
Nucleus and nucleolus 70
Mitochondria 70
Golgi complex 70
Cortical granules 71
Ribosomes and cytoplasmic lattices 71
Biochemical aspects of oocyte growth 71
2.6.5. Endocrine events during follicle growth and development 72
Gonadotrophins 72
Oestradiol and progesterone 72
Androstenedione and testosterone 72
2.6.6. Follicular atresia 73
2.7. Induction of Multiple Ovulations in the Cow 73
2.7.1. Gonadotrophins 74
2.7.2. Control of follicle growth 74
Controlling ovulation 75
2.7.3. Animal and environmental effects 75
Nutritional effects 76
2.7.4. Long-range assessments and sexed semen 77
2.7.5. Recombinant bovine somatotrophin (r-BST) and follicle growth 77
2.7.6. Characteristics of preovulatory follicles and oocytes after superovulation 78
3 Recovering the Bovine Oocyte 79
3.1. Oocyte Recovery: Abattoir Ovaries 79
3.1.1. Dissecting the intact follicle 79
Sheep and cattle 79
Other farm animals 80
3.1.2. Aspiration techniques: old and new 80
3.1.3. Ovary slicing techniques 81
Slicing and aspiration 83
Other farm animals 83
3.1.4. Transillumination-aspiration ovary (TAO) 83
3.2. Abattoir Ovaries 83
3.2.1. Ovary storage: temperatures and time-limits 83
3.2.2. Ovary storage to enhance oocyte quality
3.2.3. Temperature sensitivity of oocytes
3.2.4. Follicle size and quality
3.3. Recovering Oocytes: Live Cattle 85
3.3.1. Advantages and alternatives 86
Mares 87
Buffaloes and pigs 87
3.3.2. Laparoscopic methods of follicular aspiration 87
3.3.3. Ultrasonic methods of follicular aspiration 88
Developments in ultrasound technology 88
Ultrasound in research and practice 88
3.3.4. Developments in ovum pick-up technology 89
OPU in zebu cattle 92
3.3.5. Hormonal and nutritional pretreatments 92
Influence of growth hormone 93
Retinol 93
3.3.6. Oocytes from pregnant cattle 93
FSH stimulation 94
Contents vii
3.3.7. Oocytes from post-partum cattle 94
3.3.8. Oocytes from calves and prepubertal cattle 94
3.4. Live Donors: Other Considerations 95
3.4.1. Recovering secondary oocytes 96
3.4.2. Enhancing quality of primary oocytes 96
3.4.3. Oocyte transportation 97
3.5. Factors Affecting Oocyte Quality 97
3.5.1. Age of animal 98
Oocytes from fetal ovaries 101
3.5.2. Cattle category, oestrous cycle and ovarian morphology 101
Cattle category 101
Stage of cycle 101
Determining cycle stage 102
Morphology of ovaries 102
Cystic follicles 103
3.5.3. Body condition and nutritional considerations 103
3.5.4. Reproductive status of donor 104
3.5.5. Animal factors 104
3.5.6. Environmental factors 104
3.6. Assessing Oocyte Quality 105
3.6.1. Oocyte morphology: classification schemes 105
Oocyte diameter 108
Lipid vesicles 108
Oestradiol: progesterone ratio 108
Gene expression 108
Oocytes from zebu cattle 108
3.7. Oocytes from Preantral and Early Antral Follicles 108
3.7.1. Birth of young in mice 109
3.7.2. Differences between mice and cattle follicles 109
3.7.3. Utilizing early antral follicles 110
3.7.4. Preantral follicles in humans and pigs 111
4 Maturing the Bovine Oocyte 112
4.1. Oocyte Maturationin Vivo 112
4.1.1. Summary of events 112
4.1.2. Events leading to ovulation 113
4.1.3. Nuclear and cytoplasmic maturation 114
4.1.4. Biochemical and physiological events during maturation 116
4.2. Oocyte Maturation in the Laboratory 118
4.2.1. Historical aspects 118
4.2.2. Current understanding ofin vitromaturation in cattle 120
4.3.In VitroMaturation (IVM) Culture Systems 121
4.3.1. Culturing intact follicles 122
4.3.2. Simple and complex maturation media 122
Tissue culture medium 199 123
4.3.3. Buffering systems, osmolarity and surface tension 123
4.3.4. Water-quality considerations 123
4.3.5. Static and flux culture systems 124
4.3.6. Effect of maturation time 124
4.3.7. Antibiotic cover and oil overlay 125
viii Contents
4.3.8. Temperature, gas phase and toxic factors 125
Temperature 125
Gas phase 126
Toxic factors – ammonium 126
4.3.9. Bovine serum and bovine serum albumin 126
Bovine serum albumin (BSA) 127
Sources of bovine serum 127
Constituents of bovine serum 127
Serum levels employed in IVMmedia 128
Heat treatment of serum 128
4.3.10. Bovine follicular fluid 129
Inhibitory action of follicular fluid 130
Follicular fluid composition 130
Hyaluronic acid as a serum substitute 131
Hyaluronan in culturing oocytes in small groups 131
4.4. Somatic-cell Support 132
4.4.1. Cumulus–oocyte complex (COC) 132
4.4.2. Connexin 43 and oocyte meiotic maturation 132
4.4.3. Additional cumulus/granulosa cells 133
4.4.4. Special needs of ovum pick-up (OPU) oocytes 134
4.4.5. Use of non-follicular cells 135
4.4.6. Action of theca cells 135
4.5. Hormones and Growth Factors 135
4.5.1. Hormones 136
Follicle-stimulating hormone and luteinizing hormone 136
Prolactin 137
Growth hormone (somatotrophin) 137
Steroids 137
Insulin and GH-RH 138
4.5.2. Growth factors 138
Epidermal growth factor (EGF) 139
IGF family 139
Midkine and other growth factors 140
Other farm animals 140
4.5.3. Cytokines 140
4.5.4. Oocyte-derived growth factors 140
4.6. Oocytes Cultured Singly or in Groups 141
4.6.1. Single-oocyte culture systems 141
4.7. Single-culture medium systems 142
4.7.1. Synthetic oviductal fluid (SOF) formulations 142
4.8. Chemically Defined Culture Systems 143
4.8.1. Using synthetic oviductal fluid (SOF) 143
4.8.2. TCM-199 143
4.9. Oxidative Stress in Oocyte Maturation 144
4.9.1. Role of glutathione (GSH) 144
4.10. Two-step Culture Systems 145
4.10.1. Background information 145
4.10.2. Maintenance of meiotic arrest 146
Cattle oocytes 147
4.10.3. Biological inhibitors 147
Influence of granulosa–theca cells 147
Contents ix
4.10.4. Biochemical inhibitors 148
Role of cyclic 3′5′-adenosine monophosphate (cAMP) 148
Manganese 148
4.10.5. Pretreatment of donor cattle 148
4.10.6. Two-step treatment in the laboratory 149
Roscovitine 149
Butyrolactone I 150
Other farm animals 151
4.10.7. Enhancing the quality of oocytes from small follicles 152
4.10.8. Synchronizing germinal vesicle development 152
4.11. Other Factors Influencing Oocyte Maturation 153
4.11.1. Energy sources and second messengers 153
Glucose 153
cAMP and analogues 153
4.11.2. Hormones and vitamins 153
Prostaglandins and steroids 153
Retinoic acid 154
4.11.3. Opioid antagonists and chemical agents 154
Endogenous opioid peptides 154
Dimethylsulphoxide and ethanol 154
Selenium 154
4.11.4. Simplifying maturation culture systems 154
4.12. Evaluating the Maturation Process 155
4.12.1. Stages in nuclear maturation 155
4.12.2. Cumulus-cell expansion 156
Mitochondrial distribution 156
4.12.3. Morphological assessment and staining methods 157
4.12.4. Gene expression and oocyte competence 157
5 Capacitating Bovine Sperm 158
5.1. Introduction 158
5.1.1. Historical 158
5.1.2. The capacitation process 159
5.1.3. Hyperactivation 161
5.1.4. The acrosome reaction 161
5.1.5. Artificial induction of capacitation 163
5.2. Capacitation in the Cow 163
5.2.1. Sperm transport 163
5.2.2. Oviductal secretory cells 164
5.2.3. Glycosaminoglycans 166
5.2.4. Simulating oviductal eventsin vitro 166
5.3. Capacitation Procedures 167
5.3.1. Historical 167
5.3.2. Modifying osmolarity and pH 168
pH values 168
5.3.3. Evaluating sperm-capacitation systems 168
5.4. Heparin and Heparin-like Glycosaminoglycans 169
5.4.1. Actions and interactions of heparin 169
5.4.2. Practical application of heparin treatment 170
5.5. Use of Fresh or Frozen Semen 171
5.5.1. Fresh semen 171
x Contents
5.5.2. Frozen semen 171
5.5.3. Semen diluents 172
5.6. Bulls as a Source of Variability 172
5.6.1. High- and low-fertility bulls 173
5.6.2. Bull variability 173
5.6.3. Methods of assessing bull fertility 174
5.6.4. Enhancing semen quality 174
5.7. Efficiency of Capacitation Procedures 175
5.7.1. Staining methods 175
5.7.2. Oocyte penetration tests 175
5.7.3. Sperm–zona binding 175
6 In VitroFertilization 176
6.1. Introduction 176
6.1.1.In vitromaturation and fertilization: early reports 176
6.1.2. Chapter contents 177
6.2. Fertilization in the Cow 178
6.2.1. Oviductal environment 178
6.2.2. Lifespan of the secondary oocyte 180
6.2.3. Dispersion of cumulus cells 180
6.2.4. Fertilization rates in cattle 181
6.2.5. Fertilization rates in superovulated animals 181
Accessory spermatozoa 182
6.3. Preparing Sperm forin VitroFertilization 182
6.3.1. Use of fresh bull semen 182
6.3.2. Assessing the quality of frozen–thawed semen 183
6.3.3. Swim-up procedures 183
Swim-up and hyaluronic acid 184
Swim-up and caffeine 184
Swim-up and the sex ratio 185
6.3.3. Percoll density gradients 185
Sex-ratio deviations 186
Other farm animals 187
6.3.5. Glass-wool filtration procedures 187
6.3.6. Use of hyaluronic acid 187
6.3.7. Cell-to-cell contact 187
Cell-to-cell interactions with epididymal cells 188
6.3.8. Sperm abnormalities 188
Proximal droplets 188
Nuclear vacuoles 189
Knobbed acrosome defect 189
Robertsonian translocations 189
Hypo-osmotic swelling (HOS) as a screening assay 190
6.3.8. Sperm doses 190
6.4. Enhancing Sperm Motility 191
6.4.1. Penicillamine, hypotaurine, epinephrine (adrenalin) (PHE) 191
6.4.2. Caffeine, theophylline and pentoxifylline 191
6.5. Preparing Oocytes for Fertilization 192
6.5.1. Beneficial effects of cumulus cells 192
Cumulus-cell removal after fertilization 194
6.6.In VitroFertilization Culture Systems 195
Contents xi
6.6.1. The fertilization medium 195
TALP medium 195
SOF medium 196
Fert-CDMmedium 196
6.6.2. Protein supplementation 196
6.6.3. Gas phase considerations 197
6.6.4. Temperature, light and osmolarity 197
Temperature 197
Light 197
Osmolarity 198
6.6.5. Somatic cells in the fertilization medium 198
6.6.6. Activation of COCs with calcium ionophore (A23187) 198
6.6.7. Oxidative stress in the IVF culture system 199
6.6.8. Other factors influencing efficacy of IVF system 199
Glucose 199
GH-RH 199
Methyl-b-cyclodextrin 200
Hyaluronic acid 200
Dimethylsulphoxide (DMSO) 200
Prostaglandins 200
Toxic factors 200
6.7. Interaction of Spermatozoon and Oocyte 200
6.7.1. Sperm–oocyte recognition mechanisms 200
Oviductal factors 202
6.7.2. Early events in the fertilization process 202
Changes in zona pellucida 203
6.7.3. Crossing the interspecific sperm barrier 203
6.7.4. Factors with a negative effect on fertilization 204
Zona hardening 204
6.8. Post-insemination Treatment of Oocytes 204
6.8.1. Effect of sperm exposure time 204
6.9. Micro-assisted Fertilization 206
6.9.1. Zona thinning 206
6.9.2. Zona drilling and partial zona dissection 206
6.9.3. Subzonal sperm insertion (SUZI) 207
6.9.4. Intracytoplasmic sperm injection (ICSI) 208
Twelve thousand years into the past 209
ICSI in cattle 209
Successful cattle ICSI without artificial activation 210
Cattle ICSI in research 211
Gender preselection in cattle by ICSI 211
ICSI in the mare 212
ICSI and factors influencing oocyte activation 213
ICSI in mice 213
6.10. Efficiency of IVF Procedures 214
6.10.1. Criteria for assessing fertilization 214
Chromosome preparation 214
6.11. Fertilization Abnormalities 214
6.11.1. Polyspermy and parthenogenesis 214
Polyspermy 214
Parthenogenesis 214
xii Contents
6.12. Variability in Bull Fertility 215
6.12.1. Effect of bull on IVF outcome 215
6.12.2.In vitrofertilization tests in predicting bull fertility 216
Sperm chromatin structure 217
The bovine centrosome (centriole) 217
6.12.3. Reducing bull fertility 219
7 Culturing and Evaluating the Early Bovine Embryo 220
7.1. Introduction 220
7.1.1. Historical 220
7.1.2.In vivoculture systems 220
7.1.3.In vitroculture systems 221
7.1.4. Chapter contents 222
7.2. Early Embryo Development in the Cow 222
7.2.1. The oviductal microenvironment 222
7.2.2. Cleavage of the bovine embryo 223
Duration of cell cycles 224
Steroidogenic activity of embryo 224
Nucleoli and nucleolus organizer regions in the early embryo 224
7.2.3. Compaction and cavitation 225
Hatching 226
Apoptosis 226
7.2.4. Post-hatching progress 227
7.2.5. Embryo mortality 228
Factors in embryo mortality 229
Embryo–pathogen interactions 229
Fate of the conceptus 230
Losses after embryo transfer 230
Fetal losses 230
7.3.In VivoCulture Systems 230
7.3.1. The rabbit oviduct 230
7.3.2. The sheep oviduct 231
Elongation-stage bovine embryos 232
7.3.3. The isolated mouse oviduct 233
Using oviducts of live mice 233
7.4. Metabolism of the Early Embryo 234
7.4.1. Monitoring embryo metabolism 234
Oxygen consumption 235
Glucose utilization 236
Energy metabolism-related gene expression 236
Myo-inositol, adenylyl cyclase 236
Ultrastructural autoradiography of RNA synthesis 236
7.4.2. The development block 236
7.4.3. Activation of the bovine embryonic genome 236
7.5.In VitroCulture Systems 238
7.5.1. Embryo culture systems: past and present 238
Serum-restricted culture systems 239
Use of commercial media 240
Towards defined culture systems 240
Sequential media 240
Microfluidic embryo manipulation 241
Contents xiii
7.5.2. TCM-199 and SOF culture media 241
7.5.3. Co-culture with bovine oviductal cells 243
Bovine oviductal cell monolayer 243
7.5.4. Co-culture with non-oviductal cells 245
7.5.5. Serum-supplemented culture systems 247
Duration of serum treatment 248
Serum substitutes 248
Supplementation with bovine follicular fluid 249
7.5.6. Serum-free culture systems 249
7.5.7. Defined culture systems 250
Growth factors 251
Hyaluronic acid supplementation 251
7.5.8. Sequential media 251
Culturing cattle embryos 252
Pig embryos 253
7.5.9. Embryo group size 253
The WOW culture system 255
7.5.10. Gas atmosphere 255
Oxygen 255
Carbon dioxide 256
Ambient laboratory air 256
7.5.11. Temperature and light 256
7.5.12. Protection from oxidative stress 257
7.5.13. Hormones, growth factors and cytokines 258
Growth hormone and insulin-like growth factors 258
Interferon-tau/alpha 259
Epidermal growth factor 259
Effect of cytokines 260
7.5.14. Culture media components 260
Antibiotics 260
Insulin 261
Amino acids 261
Heparin 261
Hexoses 262
Vitamins 262
Surface-active components 262
Mineral and silicone oils 262
7.5.15. Possible toxic agents 263
Ammonia 263
Nitric oxide 263
7.5.16. Simplifying culture systems 263
7.6. Evaluating Embryo Quality 264
7.6.1. Morphological and morphometric parameters 264
Variability in embryo grading 265
Ultrastructural features 265
Human embryo quality considerations 266
7.6.2. Age and developmental stage attained 266
Time of first cleavage 266
Early cleavage and pregnancy rates in human assisted reproduction 267
Assessing embryo quality at morula stage 267
Timing of blastocyst formation 268
xiv Contents
7.6.3. Metabolic tests 268
7.6.4. Indications of embryo normality 269
Staining tests 269
Chromosomal abnormalities and cell numbers 269
Intercellular communication 270
Lipid droplets 270
Interferon-tau secretion 270
Golgi apparatus 271
Proliferating cell nuclear antigen 271
Embryo cryosurvival 271
Proteins involved in embryo developmental competence 271
7.6.5. mRNA expression patterns 271
Embryos under stress 273
7.6.6. Post-hatching evaluation 273
7.6.7. Post-transfer evaluation 275
Insulin-like growth factors 275
Heavy calves 275
IVP and nuclear-transfer cattle embryos 275
8 Preservation of Embryos and Oocytes 277
8.1. Introduction 277
8.1.1. Embryo cryopreservation: past and present 277
In vitro-produced embryos 278
Vitrification 279
Advances in other farm mammals 280
8.1.2. Advantages of embryo storage 280
8.2. Storing the Fresh Embryo 280
8.2.1. Embryo storage at ambient temperature 280
8.2.2. Embryo sensitivity to cooling 281
IVP cattle embryos 281
8.2.3. Embryo storage at refrigerator temperature 282
8.3. Conventional Freeze–Thaw Protocols 283
8.3.1. Cryoprotectants 283
8.3.2. Two-step to one-step temperature decrease 284
8.3.3. Straws for storage 284
8.3.4. One-step thawing procedures 284
8.3.5. Ethylene glycol as the cryoprotectant 286
Prefreezing additives 287
Ultrastructural studies 287
Demi-embryos 287
Trophoblastic vesicles 287
8.3.6. Thawing and cryoprotectant removal 287
8.4. Freezing the IVP bovine embryo 288
8.4.1. Morphological and functional differences 288
Embryo ultrastructure after cryopreservation 288
8.4.2. Embryo survival and pregnancy rates 288
Glycerol 289
Ethylene glycol 289
Prefreezing additives 290
Freezing zygotes and early-cleavage embryos 290
8.4.3. Delipidizing the embryo 290
Delipidizing the pig embryo 291
Contents xv
Delipidizing the IVP bovine embryo 291
Lipids and mitochondria 291
8.4.4. Effect of culture medium 292
8.4.5. Rapid freezing of IVP embryos 292
8.5. Vitrification ofin Vivo-Produced Embryos 293
8.5.1. Early studies 293
Cleavage-stage embryos 294
8.5.2. Vitrification and slow freezing as alternatives 294
8.6. Vitrification of IVP Embryos 295
8.6.1. Developing an effective vitrification procedure 295
Assisted hatching 296
Avoiding contamination of embryos 297
Factors relevant to the success of vitrification 297
8.7. Cryopreservation of the Bovine Oocyte 297
8.7.1. Factors relevant to oocyte cryopreservation 298
8.7.2. Freeze–thawing 298
Ultrastructural evaluation 299
8.7.3. Vitrification 299
Previtrification additives 301
Bovine vs. equine oocytes 301
Ultrastructural evaluation 301
8.8. Embryo Evaluation after Thawing 302
8.8.1. Evaluation of IVP embryos 302
9 Establishing Pregnancies with IVP Embryos 303
9.1. Introduction 303
9.1.1. Historical 303
9.1.2. Requirements for on-farm applications 304
From research to practice 305
Embryo transfer as a research tool 305
9.1.3. Welfare implications of using IVP embryos 305
9.2. Preparing Embryos for Transfer 306
9.2.1. Media employed 306
Antibiotic/antimicrobial cover 306
Serum and serum substitutes 306
Tropical environment 307
Handling cattle embryos 307
9.2.3. Protecting the embryo 307
Embryo encapsulation technology 307
Predicting embryo hatching 307
9.2.4. Number of embryos transferred 307
9.3. Surgical and Non-surgical Transfers 308
9.3.1. Surgical transfers 308
Endoscopy and tubal transfer of embryos 309
9.3.2. Non-surgical transfers 309
Factors affecting success 309
In vivoembryos 309
In vitroembryos 310
Operator skill 310
9.4. Donor–Recipient Synchrony 311
9.4.1. Importance of synchronization 311
Accuracy of oestrus detection 312
xvi Contents
9.4.2. Synchronization in the IVP embryo context 312
9.5. Oestrus Synchronization Techniques 312
9.5.1. Protocols for synchronizing oestrus 312
Ovsynch 313
Progesterone/progestogen 313
9.6. Selection and Management of Recipients 315
9.6.1. Heifers versus cows 315
9.6.2. Factors affecting recipient suitability 316
Recipient hormone levels 316
Plasma urea nitrogen 316
Repeated transfers 316
Role of the major histocompatibility complex (MHC) 316
9.6.3. Minimizing stress in recipients 316
Tranquillization 317
Welfare concerns 317
9.6.4. Detecting early pregnancy in recipients 317
9.7. Enhancing Pregnancy Rates in Recipients 318
9.7.1. Progesterone supplementation 318
9.7.2. Hormonal therapy in early dioestrus 319
9.7.3. Hormonal therapy in late dioestrus 319
9.7.4. Use of trophoblastic vesicles 320
9.7.5. Prostaglandin inhibitors 320
9.7.6. Oral treatment with propylene glycol 320
9.7.7. Re-synchrony of non-pregnant recipients 321
10 Embryos and Oocytes in Research and Commerce 322
10.1. Introduction 322
10.1.1. From research to commercial application 323
10.1.2. Cattle products and human health 323
Population growth and food resources 324
10.2. Embryo Production Technology: Problems 325
10.2.1. Differences between IVP- andin vivo-derived offspring 326
10.2.2. The large-offspring syndrome (LOS) 327
Placental abnormalities 327
Gene expression 328
IVP embryo laboratories and LOS 328
10.2.3. Large-offspring syndrome: human implications? 329
10.3. Embryo Production Technology: Prospects 330
10.3.1. Animal-health considerations 330
Contaminated semen 332
Problems posed by IVP cattle embryos 332
Detection of viruses 333
Reducing infectivity associated with IVP embryos 333
10.3.2. IVP embryos in breeding-improvement programmes 333
MOET schemes 333
Open-nucleus breeding scheme 334
Reducing the generation interval 334
Post-mortem use of valuable genetic material 335
Future developments 335
10.3.3. Beef calves from dairy cows 335
10.3.4. Twinning by embryo transfer 336
Mechanisms controlling double ovulations 336
Contents xvii
Embryo transfer 336
Feasibility of twinning in farming practice 338
10.3.5. Preserving genetic diversity 338
Using immature sperm cells 339
10.3.6. Embryos for tropical/subtropical regions 339
10.3.7. Bypassing heat-stress problems 339
10.3.8. Dealing with repeat breeders 341
Infertile cows 341
10.3.9. Cattle embryos and oocytes for research 342
Interspecies nuclear transfer 342
Identifying toxicants 343
Environmental pollutants 343
10.4. Sex Control by Sperm Separation 343
10.4.1. The case for semen sexing 345
10.4.2. Semen-sexing technology 346
Beltsville sexing technology 346
Other sorting studies 346
Sperm-membrane changes in sorted sperm 347
Effect of Fert Plus peptide 347
Frozen sexed semen 347
In vitrofertilization with sorted bull sperm 348
10.4.3. Alternatives to sexing by flow cytometry 349
Immunological approach 349
Separation by density gradients 349
Spermatozoal head size and volume 350
10.4.4. Effect of AI timing on sex ratio 350
10.4.5. Sperm separation in other farm animals 351
Pigs 351
Horses 352
Sheep 352
10.5. Embryo Sexing 352
10.5.1. Sexing by polymerase chain reaction technology 353
10.5.2. Fluorescencein situhybridization 354
Sexing by male-specific antigen 354
10.5.3. Sexual dimorphism 355
10.6. Cloning in Cattle: Progress and Problems 356
10.6.1. Introduction 357
Story to date 357
Normality of clones 359
Safety of food products 359
10.6.2. Embryo splitting 359
10.6.3. Essential steps in nuclear transfer 360
Quality of recipient oocytes 360
Enucleation 360
Telophase enucleation 362
Introduction of donor nucleus 362
Choice of donor cell and cell-cycle stage 363
Fetal or adult somatic cells 364
Quiescent or proliferating cells 365
Non-viable cells as donors 365
Activation 365
10.6.4. Nuclear reprogramming 366
xviii Contents
10.6.5. Simplifying nuclear-transfer protocols 367
10.6.6. Preserving donor cells, cytoplasts and cloned embryos 368
Refrigeration 368
Freezing 368
Vitrification 368
10.6.6.In vitroculture and evaluation of nuclear-transfer embryos 369
Ploidy analysis 369
Ribosomal RNA gene activation 369
Apoptosis 370
ICMand TE cells 370
Gene expression patterns 370
Mitochondrial heteroplasmy 370
Telomerase activity 370
10.6.7. Gestational and perinatal losses 371
Neonatal care 372
Preventing LOS? 372
10.6.8. Development of clones after birth 372
10.6.9. Embryonic stem cells 373
10.7. Transgenic Cattle 373
10.7.1. Development of transgenic technology in cattle 375
10.7.2. Potential advantages of transgenic cattle 375
10.7.3. Methods of genetic modification in cattle 376
Pronuclear injection 376
Transfected cells for nuclear transfer 377
Gene targeting 378
Sperm-mediated DNA transfer 378
Retroviral infection of early embryos 379
10.7.4. Transgenic embryos in the laboratory 379
Predicting transgene integration 379
Preserving embryos 379
10.7.5. Losses in transgenic embryos, fetuses and calves 380
10.7.6. Transgenic cattle on the farm 380
Germ-line mosaic bulls 380
Transgenic cows 380
10.7.7. Welfare of transgenic cattle 380
Appendices
Appendix A: Embryo Production Protocols 382
Appendix B: Preparation of Culture Media 389
Appendix C: Cryopreservation Procedures 392
Appendix D: Journals, Books and On-line Sources of Information Relevant to
thein VitroProduction and Transfer of Cattle Embryos 394
References 396
Index
*3,000 new references added since the first edition
*Gives information necessary to produce embryos totally through in vitro techniques
*Shows commercial applications of embryo and oocyte research
Cattle remain at the forefront of many new developments in reproductive technology and what can be done for the cow today will later be applicable to other farm livestock and perhaps humans. This new edition reviews the considerable advances and issues in embryo production technology, based on reports since the first edition in 1994. This is a must-have volume for those who own the first edition, and an incredibly informative text.
CONTENTS:
1 Developments in Embryoin VitroProduction (IVP) Technology1
1.1. Historical Aspects 1
1.1.1. Early IVF reports 1
1.1.2. Cattle IVF 1
1.2. Cambridge Contributions 3
1.2.1. School of Agriculture 3
1.2.2. Animal Research Station 3
Embryos across the Atlantic 4
Using rabbits to good effect 4
Dawn of cattle ET industry 5
1.2.3. Cambridge, Babraham and beyond 5
1.3. Irish Contributions 6
1.3.1. Early studies in cattle 7
1.3.2. Cattle twins by embryo transfer 8
1.3.3. Low-cost embryos 8
1.3.4. Commercializing the embryo production procedure 10
1.3.5. Commercial unacceptability 10
1.3.6. Towards sexed semen on the farm 12
1.4. Developments in ET Technology 13
1.4.1. Thirty years of progress 13
1.4.2. Current cattle ET activity 14
1.4.3. Commercial advantages of cattle ET 15
1.5. Laboratory-produced Embryos 15
1.5.1. Current level of activity 16
Ovum pick-up (OPU) 16
1.5.2. Research with bovine IVP embryos 17
1.5.3. Commercial use of IVP embryos 18
1.5.4. Pathogen-free IVP embryos 19
1.5.5. Animal health and welfare considerations 20
1.6. Embryo Production in Other Farm Mammals 20
1.6.1. Buffaloes 21
1.6.2. Horses 22
v
1.6.3. Pigs 26
1.6.4. Sheep and goats 28
1.6.5. Deer 30
1.6.6. Camelids 31
1.7. Humanin VitroFertilization 32
1.7.1. Historical aspects 32
1.7.2. Establishment of pregnancy by embryo transfer 33
1.7.3. Ovarian stimulation regimens for IVF 33
1.7.4. Recovery of human oocytes 34
1.7.5.In vitromaturation of human oocytes 34
1.7.6. Intracytoplasmic sperm injection (ICSI) 36
1.7.7. Early embryo culture 37
1.7.8. Assessing embryo quality 38
1.7.9. Cryopreservation of embryos and oocytes 39
Oocyte preservation 40
1.7.10. Gender preselection 40
2 The Bovine Oestrous Cycle and Associated Events 42
2.1. Oestrus and the Oestrous Cycle 42
2.1.1. Oestrus 42
2.1.2. Expression of heat 44
2.1.3. Aids to heat detection 44
2.1.4. Endocrine basis of oestrus 45
2.2. The Oestrous Cycle 46
2.2.1. Corpus luteum and progesterone 46
2.2.2. Follicular dynamics in the cow 49
Growing understanding of folliculogenesis 49
Zebu cattle 52
2.2.3. The dominant follicle 52
2.2.4. Monitoring ovarian activity 53
2.3. Endocrine Events in the Oestrous Cycle 55
2.3.1. Gonadotrophin release 55
2.3.2. Intraovarian events 56
2.4. Synchronizing Oestrus 56
2.4.1. Treatment regimens 56
2.5. Prenatal Development of the Bovine Ovary 58
2.5.1. Migration of primordial germ cells 59
2.5.2. Formation of oogonia 59
2.5.3. The primordial follicle 60
2.5.4. Activation of primordial follicles 61
2.5.5. Growth and development of follicles 61
2.5.6. Formation of the zona pellucida 62
2.5.7. Development of growing follicles 63
2.5.8. Antral follicles 63
2.5.9. Follicular atresia 64
2.6. The Bovine Ovary in Postnatal Life 64
2.6.1. The prepubertal animal 64
2.6.2. Antral follicle population 65
2.6.3. Follicle development 65
Granulosa cells 66
Thecal cells 67
Basement membrane 68
vi Contents
2.6.4. Oocyte growth and development 68
Nucleus and nucleolus 70
Mitochondria 70
Golgi complex 70
Cortical granules 71
Ribosomes and cytoplasmic lattices 71
Biochemical aspects of oocyte growth 71
2.6.5. Endocrine events during follicle growth and development 72
Gonadotrophins 72
Oestradiol and progesterone 72
Androstenedione and testosterone 72
2.6.6. Follicular atresia 73
2.7. Induction of Multiple Ovulations in the Cow 73
2.7.1. Gonadotrophins 74
2.7.2. Control of follicle growth 74
Controlling ovulation 75
2.7.3. Animal and environmental effects 75
Nutritional effects 76
2.7.4. Long-range assessments and sexed semen 77
2.7.5. Recombinant bovine somatotrophin (r-BST) and follicle growth 77
2.7.6. Characteristics of preovulatory follicles and oocytes after superovulation 78
3 Recovering the Bovine Oocyte 79
3.1. Oocyte Recovery: Abattoir Ovaries 79
3.1.1. Dissecting the intact follicle 79
Sheep and cattle 79
Other farm animals 80
3.1.2. Aspiration techniques: old and new 80
3.1.3. Ovary slicing techniques 81
Slicing and aspiration 83
Other farm animals 83
3.1.4. Transillumination-aspiration ovary (TAO) 83
3.2. Abattoir Ovaries 83
3.2.1. Ovary storage: temperatures and time-limits 83
3.2.2. Ovary storage to enhance oocyte quality
3.2.3. Temperature sensitivity of oocytes
3.2.4. Follicle size and quality
3.3. Recovering Oocytes: Live Cattle 85
3.3.1. Advantages and alternatives 86
Mares 87
Buffaloes and pigs 87
3.3.2. Laparoscopic methods of follicular aspiration 87
3.3.3. Ultrasonic methods of follicular aspiration 88
Developments in ultrasound technology 88
Ultrasound in research and practice 88
3.3.4. Developments in ovum pick-up technology 89
OPU in zebu cattle 92
3.3.5. Hormonal and nutritional pretreatments 92
Influence of growth hormone 93
Retinol 93
3.3.6. Oocytes from pregnant cattle 93
FSH stimulation 94
Contents vii
3.3.7. Oocytes from post-partum cattle 94
3.3.8. Oocytes from calves and prepubertal cattle 94
3.4. Live Donors: Other Considerations 95
3.4.1. Recovering secondary oocytes 96
3.4.2. Enhancing quality of primary oocytes 96
3.4.3. Oocyte transportation 97
3.5. Factors Affecting Oocyte Quality 97
3.5.1. Age of animal 98
Oocytes from fetal ovaries 101
3.5.2. Cattle category, oestrous cycle and ovarian morphology 101
Cattle category 101
Stage of cycle 101
Determining cycle stage 102
Morphology of ovaries 102
Cystic follicles 103
3.5.3. Body condition and nutritional considerations 103
3.5.4. Reproductive status of donor 104
3.5.5. Animal factors 104
3.5.6. Environmental factors 104
3.6. Assessing Oocyte Quality 105
3.6.1. Oocyte morphology: classification schemes 105
Oocyte diameter 108
Lipid vesicles 108
Oestradiol: progesterone ratio 108
Gene expression 108
Oocytes from zebu cattle 108
3.7. Oocytes from Preantral and Early Antral Follicles 108
3.7.1. Birth of young in mice 109
3.7.2. Differences between mice and cattle follicles 109
3.7.3. Utilizing early antral follicles 110
3.7.4. Preantral follicles in humans and pigs 111
4 Maturing the Bovine Oocyte 112
4.1. Oocyte Maturationin Vivo 112
4.1.1. Summary of events 112
4.1.2. Events leading to ovulation 113
4.1.3. Nuclear and cytoplasmic maturation 114
4.1.4. Biochemical and physiological events during maturation 116
4.2. Oocyte Maturation in the Laboratory 118
4.2.1. Historical aspects 118
4.2.2. Current understanding ofin vitromaturation in cattle 120
4.3.In VitroMaturation (IVM) Culture Systems 121
4.3.1. Culturing intact follicles 122
4.3.2. Simple and complex maturation media 122
Tissue culture medium 199 123
4.3.3. Buffering systems, osmolarity and surface tension 123
4.3.4. Water-quality considerations 123
4.3.5. Static and flux culture systems 124
4.3.6. Effect of maturation time 124
4.3.7. Antibiotic cover and oil overlay 125
viii Contents
4.3.8. Temperature, gas phase and toxic factors 125
Temperature 125
Gas phase 126
Toxic factors – ammonium 126
4.3.9. Bovine serum and bovine serum albumin 126
Bovine serum albumin (BSA) 127
Sources of bovine serum 127
Constituents of bovine serum 127
Serum levels employed in IVMmedia 128
Heat treatment of serum 128
4.3.10. Bovine follicular fluid 129
Inhibitory action of follicular fluid 130
Follicular fluid composition 130
Hyaluronic acid as a serum substitute 131
Hyaluronan in culturing oocytes in small groups 131
4.4. Somatic-cell Support 132
4.4.1. Cumulus–oocyte complex (COC) 132
4.4.2. Connexin 43 and oocyte meiotic maturation 132
4.4.3. Additional cumulus/granulosa cells 133
4.4.4. Special needs of ovum pick-up (OPU) oocytes 134
4.4.5. Use of non-follicular cells 135
4.4.6. Action of theca cells 135
4.5. Hormones and Growth Factors 135
4.5.1. Hormones 136
Follicle-stimulating hormone and luteinizing hormone 136
Prolactin 137
Growth hormone (somatotrophin) 137
Steroids 137
Insulin and GH-RH 138
4.5.2. Growth factors 138
Epidermal growth factor (EGF) 139
IGF family 139
Midkine and other growth factors 140
Other farm animals 140
4.5.3. Cytokines 140
4.5.4. Oocyte-derived growth factors 140
4.6. Oocytes Cultured Singly or in Groups 141
4.6.1. Single-oocyte culture systems 141
4.7. Single-culture medium systems 142
4.7.1. Synthetic oviductal fluid (SOF) formulations 142
4.8. Chemically Defined Culture Systems 143
4.8.1. Using synthetic oviductal fluid (SOF) 143
4.8.2. TCM-199 143
4.9. Oxidative Stress in Oocyte Maturation 144
4.9.1. Role of glutathione (GSH) 144
4.10. Two-step Culture Systems 145
4.10.1. Background information 145
4.10.2. Maintenance of meiotic arrest 146
Cattle oocytes 147
4.10.3. Biological inhibitors 147
Influence of granulosa–theca cells 147
Contents ix
4.10.4. Biochemical inhibitors 148
Role of cyclic 3′5′-adenosine monophosphate (cAMP) 148
Manganese 148
4.10.5. Pretreatment of donor cattle 148
4.10.6. Two-step treatment in the laboratory 149
Roscovitine 149
Butyrolactone I 150
Other farm animals 151
4.10.7. Enhancing the quality of oocytes from small follicles 152
4.10.8. Synchronizing germinal vesicle development 152
4.11. Other Factors Influencing Oocyte Maturation 153
4.11.1. Energy sources and second messengers 153
Glucose 153
cAMP and analogues 153
4.11.2. Hormones and vitamins 153
Prostaglandins and steroids 153
Retinoic acid 154
4.11.3. Opioid antagonists and chemical agents 154
Endogenous opioid peptides 154
Dimethylsulphoxide and ethanol 154
Selenium 154
4.11.4. Simplifying maturation culture systems 154
4.12. Evaluating the Maturation Process 155
4.12.1. Stages in nuclear maturation 155
4.12.2. Cumulus-cell expansion 156
Mitochondrial distribution 156
4.12.3. Morphological assessment and staining methods 157
4.12.4. Gene expression and oocyte competence 157
5 Capacitating Bovine Sperm 158
5.1. Introduction 158
5.1.1. Historical 158
5.1.2. The capacitation process 159
5.1.3. Hyperactivation 161
5.1.4. The acrosome reaction 161
5.1.5. Artificial induction of capacitation 163
5.2. Capacitation in the Cow 163
5.2.1. Sperm transport 163
5.2.2. Oviductal secretory cells 164
5.2.3. Glycosaminoglycans 166
5.2.4. Simulating oviductal eventsin vitro 166
5.3. Capacitation Procedures 167
5.3.1. Historical 167
5.3.2. Modifying osmolarity and pH 168
pH values 168
5.3.3. Evaluating sperm-capacitation systems 168
5.4. Heparin and Heparin-like Glycosaminoglycans 169
5.4.1. Actions and interactions of heparin 169
5.4.2. Practical application of heparin treatment 170
5.5. Use of Fresh or Frozen Semen 171
5.5.1. Fresh semen 171
x Contents
5.5.2. Frozen semen 171
5.5.3. Semen diluents 172
5.6. Bulls as a Source of Variability 172
5.6.1. High- and low-fertility bulls 173
5.6.2. Bull variability 173
5.6.3. Methods of assessing bull fertility 174
5.6.4. Enhancing semen quality 174
5.7. Efficiency of Capacitation Procedures 175
5.7.1. Staining methods 175
5.7.2. Oocyte penetration tests 175
5.7.3. Sperm–zona binding 175
6 In VitroFertilization 176
6.1. Introduction 176
6.1.1.In vitromaturation and fertilization: early reports 176
6.1.2. Chapter contents 177
6.2. Fertilization in the Cow 178
6.2.1. Oviductal environment 178
6.2.2. Lifespan of the secondary oocyte 180
6.2.3. Dispersion of cumulus cells 180
6.2.4. Fertilization rates in cattle 181
6.2.5. Fertilization rates in superovulated animals 181
Accessory spermatozoa 182
6.3. Preparing Sperm forin VitroFertilization 182
6.3.1. Use of fresh bull semen 182
6.3.2. Assessing the quality of frozen–thawed semen 183
6.3.3. Swim-up procedures 183
Swim-up and hyaluronic acid 184
Swim-up and caffeine 184
Swim-up and the sex ratio 185
6.3.3. Percoll density gradients 185
Sex-ratio deviations 186
Other farm animals 187
6.3.5. Glass-wool filtration procedures 187
6.3.6. Use of hyaluronic acid 187
6.3.7. Cell-to-cell contact 187
Cell-to-cell interactions with epididymal cells 188
6.3.8. Sperm abnormalities 188
Proximal droplets 188
Nuclear vacuoles 189
Knobbed acrosome defect 189
Robertsonian translocations 189
Hypo-osmotic swelling (HOS) as a screening assay 190
6.3.8. Sperm doses 190
6.4. Enhancing Sperm Motility 191
6.4.1. Penicillamine, hypotaurine, epinephrine (adrenalin) (PHE) 191
6.4.2. Caffeine, theophylline and pentoxifylline 191
6.5. Preparing Oocytes for Fertilization 192
6.5.1. Beneficial effects of cumulus cells 192
Cumulus-cell removal after fertilization 194
6.6.In VitroFertilization Culture Systems 195
Contents xi
6.6.1. The fertilization medium 195
TALP medium 195
SOF medium 196
Fert-CDMmedium 196
6.6.2. Protein supplementation 196
6.6.3. Gas phase considerations 197
6.6.4. Temperature, light and osmolarity 197
Temperature 197
Light 197
Osmolarity 198
6.6.5. Somatic cells in the fertilization medium 198
6.6.6. Activation of COCs with calcium ionophore (A23187) 198
6.6.7. Oxidative stress in the IVF culture system 199
6.6.8. Other factors influencing efficacy of IVF system 199
Glucose 199
GH-RH 199
Methyl-b-cyclodextrin 200
Hyaluronic acid 200
Dimethylsulphoxide (DMSO) 200
Prostaglandins 200
Toxic factors 200
6.7. Interaction of Spermatozoon and Oocyte 200
6.7.1. Sperm–oocyte recognition mechanisms 200
Oviductal factors 202
6.7.2. Early events in the fertilization process 202
Changes in zona pellucida 203
6.7.3. Crossing the interspecific sperm barrier 203
6.7.4. Factors with a negative effect on fertilization 204
Zona hardening 204
6.8. Post-insemination Treatment of Oocytes 204
6.8.1. Effect of sperm exposure time 204
6.9. Micro-assisted Fertilization 206
6.9.1. Zona thinning 206
6.9.2. Zona drilling and partial zona dissection 206
6.9.3. Subzonal sperm insertion (SUZI) 207
6.9.4. Intracytoplasmic sperm injection (ICSI) 208
Twelve thousand years into the past 209
ICSI in cattle 209
Successful cattle ICSI without artificial activation 210
Cattle ICSI in research 211
Gender preselection in cattle by ICSI 211
ICSI in the mare 212
ICSI and factors influencing oocyte activation 213
ICSI in mice 213
6.10. Efficiency of IVF Procedures 214
6.10.1. Criteria for assessing fertilization 214
Chromosome preparation 214
6.11. Fertilization Abnormalities 214
6.11.1. Polyspermy and parthenogenesis 214
Polyspermy 214
Parthenogenesis 214
xii Contents
6.12. Variability in Bull Fertility 215
6.12.1. Effect of bull on IVF outcome 215
6.12.2.In vitrofertilization tests in predicting bull fertility 216
Sperm chromatin structure 217
The bovine centrosome (centriole) 217
6.12.3. Reducing bull fertility 219
7 Culturing and Evaluating the Early Bovine Embryo 220
7.1. Introduction 220
7.1.1. Historical 220
7.1.2.In vivoculture systems 220
7.1.3.In vitroculture systems 221
7.1.4. Chapter contents 222
7.2. Early Embryo Development in the Cow 222
7.2.1. The oviductal microenvironment 222
7.2.2. Cleavage of the bovine embryo 223
Duration of cell cycles 224
Steroidogenic activity of embryo 224
Nucleoli and nucleolus organizer regions in the early embryo 224
7.2.3. Compaction and cavitation 225
Hatching 226
Apoptosis 226
7.2.4. Post-hatching progress 227
7.2.5. Embryo mortality 228
Factors in embryo mortality 229
Embryo–pathogen interactions 229
Fate of the conceptus 230
Losses after embryo transfer 230
Fetal losses 230
7.3.In VivoCulture Systems 230
7.3.1. The rabbit oviduct 230
7.3.2. The sheep oviduct 231
Elongation-stage bovine embryos 232
7.3.3. The isolated mouse oviduct 233
Using oviducts of live mice 233
7.4. Metabolism of the Early Embryo 234
7.4.1. Monitoring embryo metabolism 234
Oxygen consumption 235
Glucose utilization 236
Energy metabolism-related gene expression 236
Myo-inositol, adenylyl cyclase 236
Ultrastructural autoradiography of RNA synthesis 236
7.4.2. The development block 236
7.4.3. Activation of the bovine embryonic genome 236
7.5.In VitroCulture Systems 238
7.5.1. Embryo culture systems: past and present 238
Serum-restricted culture systems 239
Use of commercial media 240
Towards defined culture systems 240
Sequential media 240
Microfluidic embryo manipulation 241
Contents xiii
7.5.2. TCM-199 and SOF culture media 241
7.5.3. Co-culture with bovine oviductal cells 243
Bovine oviductal cell monolayer 243
7.5.4. Co-culture with non-oviductal cells 245
7.5.5. Serum-supplemented culture systems 247
Duration of serum treatment 248
Serum substitutes 248
Supplementation with bovine follicular fluid 249
7.5.6. Serum-free culture systems 249
7.5.7. Defined culture systems 250
Growth factors 251
Hyaluronic acid supplementation 251
7.5.8. Sequential media 251
Culturing cattle embryos 252
Pig embryos 253
7.5.9. Embryo group size 253
The WOW culture system 255
7.5.10. Gas atmosphere 255
Oxygen 255
Carbon dioxide 256
Ambient laboratory air 256
7.5.11. Temperature and light 256
7.5.12. Protection from oxidative stress 257
7.5.13. Hormones, growth factors and cytokines 258
Growth hormone and insulin-like growth factors 258
Interferon-tau/alpha 259
Epidermal growth factor 259
Effect of cytokines 260
7.5.14. Culture media components 260
Antibiotics 260
Insulin 261
Amino acids 261
Heparin 261
Hexoses 262
Vitamins 262
Surface-active components 262
Mineral and silicone oils 262
7.5.15. Possible toxic agents 263
Ammonia 263
Nitric oxide 263
7.5.16. Simplifying culture systems 263
7.6. Evaluating Embryo Quality 264
7.6.1. Morphological and morphometric parameters 264
Variability in embryo grading 265
Ultrastructural features 265
Human embryo quality considerations 266
7.6.2. Age and developmental stage attained 266
Time of first cleavage 266
Early cleavage and pregnancy rates in human assisted reproduction 267
Assessing embryo quality at morula stage 267
Timing of blastocyst formation 268
xiv Contents
7.6.3. Metabolic tests 268
7.6.4. Indications of embryo normality 269
Staining tests 269
Chromosomal abnormalities and cell numbers 269
Intercellular communication 270
Lipid droplets 270
Interferon-tau secretion 270
Golgi apparatus 271
Proliferating cell nuclear antigen 271
Embryo cryosurvival 271
Proteins involved in embryo developmental competence 271
7.6.5. mRNA expression patterns 271
Embryos under stress 273
7.6.6. Post-hatching evaluation 273
7.6.7. Post-transfer evaluation 275
Insulin-like growth factors 275
Heavy calves 275
IVP and nuclear-transfer cattle embryos 275
8 Preservation of Embryos and Oocytes 277
8.1. Introduction 277
8.1.1. Embryo cryopreservation: past and present 277
In vitro-produced embryos 278
Vitrification 279
Advances in other farm mammals 280
8.1.2. Advantages of embryo storage 280
8.2. Storing the Fresh Embryo 280
8.2.1. Embryo storage at ambient temperature 280
8.2.2. Embryo sensitivity to cooling 281
IVP cattle embryos 281
8.2.3. Embryo storage at refrigerator temperature 282
8.3. Conventional Freeze–Thaw Protocols 283
8.3.1. Cryoprotectants 283
8.3.2. Two-step to one-step temperature decrease 284
8.3.3. Straws for storage 284
8.3.4. One-step thawing procedures 284
8.3.5. Ethylene glycol as the cryoprotectant 286
Prefreezing additives 287
Ultrastructural studies 287
Demi-embryos 287
Trophoblastic vesicles 287
8.3.6. Thawing and cryoprotectant removal 287
8.4. Freezing the IVP bovine embryo 288
8.4.1. Morphological and functional differences 288
Embryo ultrastructure after cryopreservation 288
8.4.2. Embryo survival and pregnancy rates 288
Glycerol 289
Ethylene glycol 289
Prefreezing additives 290
Freezing zygotes and early-cleavage embryos 290
8.4.3. Delipidizing the embryo 290
Delipidizing the pig embryo 291
Contents xv
Delipidizing the IVP bovine embryo 291
Lipids and mitochondria 291
8.4.4. Effect of culture medium 292
8.4.5. Rapid freezing of IVP embryos 292
8.5. Vitrification ofin Vivo-Produced Embryos 293
8.5.1. Early studies 293
Cleavage-stage embryos 294
8.5.2. Vitrification and slow freezing as alternatives 294
8.6. Vitrification of IVP Embryos 295
8.6.1. Developing an effective vitrification procedure 295
Assisted hatching 296
Avoiding contamination of embryos 297
Factors relevant to the success of vitrification 297
8.7. Cryopreservation of the Bovine Oocyte 297
8.7.1. Factors relevant to oocyte cryopreservation 298
8.7.2. Freeze–thawing 298
Ultrastructural evaluation 299
8.7.3. Vitrification 299
Previtrification additives 301
Bovine vs. equine oocytes 301
Ultrastructural evaluation 301
8.8. Embryo Evaluation after Thawing 302
8.8.1. Evaluation of IVP embryos 302
9 Establishing Pregnancies with IVP Embryos 303
9.1. Introduction 303
9.1.1. Historical 303
9.1.2. Requirements for on-farm applications 304
From research to practice 305
Embryo transfer as a research tool 305
9.1.3. Welfare implications of using IVP embryos 305
9.2. Preparing Embryos for Transfer 306
9.2.1. Media employed 306
Antibiotic/antimicrobial cover 306
Serum and serum substitutes 306
Tropical environment 307
Handling cattle embryos 307
9.2.3. Protecting the embryo 307
Embryo encapsulation technology 307
Predicting embryo hatching 307
9.2.4. Number of embryos transferred 307
9.3. Surgical and Non-surgical Transfers 308
9.3.1. Surgical transfers 308
Endoscopy and tubal transfer of embryos 309
9.3.2. Non-surgical transfers 309
Factors affecting success 309
In vivoembryos 309
In vitroembryos 310
Operator skill 310
9.4. Donor–Recipient Synchrony 311
9.4.1. Importance of synchronization 311
Accuracy of oestrus detection 312
xvi Contents
9.4.2. Synchronization in the IVP embryo context 312
9.5. Oestrus Synchronization Techniques 312
9.5.1. Protocols for synchronizing oestrus 312
Ovsynch 313
Progesterone/progestogen 313
9.6. Selection and Management of Recipients 315
9.6.1. Heifers versus cows 315
9.6.2. Factors affecting recipient suitability 316
Recipient hormone levels 316
Plasma urea nitrogen 316
Repeated transfers 316
Role of the major histocompatibility complex (MHC) 316
9.6.3. Minimizing stress in recipients 316
Tranquillization 317
Welfare concerns 317
9.6.4. Detecting early pregnancy in recipients 317
9.7. Enhancing Pregnancy Rates in Recipients 318
9.7.1. Progesterone supplementation 318
9.7.2. Hormonal therapy in early dioestrus 319
9.7.3. Hormonal therapy in late dioestrus 319
9.7.4. Use of trophoblastic vesicles 320
9.7.5. Prostaglandin inhibitors 320
9.7.6. Oral treatment with propylene glycol 320
9.7.7. Re-synchrony of non-pregnant recipients 321
10 Embryos and Oocytes in Research and Commerce 322
10.1. Introduction 322
10.1.1. From research to commercial application 323
10.1.2. Cattle products and human health 323
Population growth and food resources 324
10.2. Embryo Production Technology: Problems 325
10.2.1. Differences between IVP- andin vivo-derived offspring 326
10.2.2. The large-offspring syndrome (LOS) 327
Placental abnormalities 327
Gene expression 328
IVP embryo laboratories and LOS 328
10.2.3. Large-offspring syndrome: human implications? 329
10.3. Embryo Production Technology: Prospects 330
10.3.1. Animal-health considerations 330
Contaminated semen 332
Problems posed by IVP cattle embryos 332
Detection of viruses 333
Reducing infectivity associated with IVP embryos 333
10.3.2. IVP embryos in breeding-improvement programmes 333
MOET schemes 333
Open-nucleus breeding scheme 334
Reducing the generation interval 334
Post-mortem use of valuable genetic material 335
Future developments 335
10.3.3. Beef calves from dairy cows 335
10.3.4. Twinning by embryo transfer 336
Mechanisms controlling double ovulations 336
Contents xvii
Embryo transfer 336
Feasibility of twinning in farming practice 338
10.3.5. Preserving genetic diversity 338
Using immature sperm cells 339
10.3.6. Embryos for tropical/subtropical regions 339
10.3.7. Bypassing heat-stress problems 339
10.3.8. Dealing with repeat breeders 341
Infertile cows 341
10.3.9. Cattle embryos and oocytes for research 342
Interspecies nuclear transfer 342
Identifying toxicants 343
Environmental pollutants 343
10.4. Sex Control by Sperm Separation 343
10.4.1. The case for semen sexing 345
10.4.2. Semen-sexing technology 346
Beltsville sexing technology 346
Other sorting studies 346
Sperm-membrane changes in sorted sperm 347
Effect of Fert Plus peptide 347
Frozen sexed semen 347
In vitrofertilization with sorted bull sperm 348
10.4.3. Alternatives to sexing by flow cytometry 349
Immunological approach 349
Separation by density gradients 349
Spermatozoal head size and volume 350
10.4.4. Effect of AI timing on sex ratio 350
10.4.5. Sperm separation in other farm animals 351
Pigs 351
Horses 352
Sheep 352
10.5. Embryo Sexing 352
10.5.1. Sexing by polymerase chain reaction technology 353
10.5.2. Fluorescencein situhybridization 354
Sexing by male-specific antigen 354
10.5.3. Sexual dimorphism 355
10.6. Cloning in Cattle: Progress and Problems 356
10.6.1. Introduction 357
Story to date 357
Normality of clones 359
Safety of food products 359
10.6.2. Embryo splitting 359
10.6.3. Essential steps in nuclear transfer 360
Quality of recipient oocytes 360
Enucleation 360
Telophase enucleation 362
Introduction of donor nucleus 362
Choice of donor cell and cell-cycle stage 363
Fetal or adult somatic cells 364
Quiescent or proliferating cells 365
Non-viable cells as donors 365
Activation 365
10.6.4. Nuclear reprogramming 366
xviii Contents
10.6.5. Simplifying nuclear-transfer protocols 367
10.6.6. Preserving donor cells, cytoplasts and cloned embryos 368
Refrigeration 368
Freezing 368
Vitrification 368
10.6.6.In vitroculture and evaluation of nuclear-transfer embryos 369
Ploidy analysis 369
Ribosomal RNA gene activation 369
Apoptosis 370
ICMand TE cells 370
Gene expression patterns 370
Mitochondrial heteroplasmy 370
Telomerase activity 370
10.6.7. Gestational and perinatal losses 371
Neonatal care 372
Preventing LOS? 372
10.6.8. Development of clones after birth 372
10.6.9. Embryonic stem cells 373
10.7. Transgenic Cattle 373
10.7.1. Development of transgenic technology in cattle 375
10.7.2. Potential advantages of transgenic cattle 375
10.7.3. Methods of genetic modification in cattle 376
Pronuclear injection 376
Transfected cells for nuclear transfer 377
Gene targeting 378
Sperm-mediated DNA transfer 378
Retroviral infection of early embryos 379
10.7.4. Transgenic embryos in the laboratory 379
Predicting transgene integration 379
Preserving embryos 379
10.7.5. Losses in transgenic embryos, fetuses and calves 380
10.7.6. Transgenic cattle on the farm 380
Germ-line mosaic bulls 380
Transgenic cows 380
10.7.7. Welfare of transgenic cattle 380
Appendices
Appendix A: Embryo Production Protocols 382
Appendix B: Preparation of Culture Media 389
Appendix C: Cryopreservation Procedures 392
Appendix D: Journals, Books and On-line Sources of Information Relevant to
thein VitroProduction and Transfer of Cattle Embryos 394
References 396
Index
Không có nhận xét nào: