EBOOK - Handbook of Hot‐Dip Galvanization - Full Edition (Dr. Peter Maaß)



Sổ tay về mạ kẽm nhúng nóng.


Hot-dip galvanization is a method for coating steel workpieces with a protective zinc film to enhance the corrosion resistance and to improve the mechanical material properties. Hot-dip galvanized steel is the material of choice underlying many modern buildings and constructions, such as train stations, bridges and metal domes.

Based on the successful German version, this edition has been adapted to include international standards, regulations and best practices. The book systematically covers all steps in hot-dip galvanization: surface pre-treatment, process and systems technology, environmental issues, and quality management. As a result, the reader finds the fundamentals as well as the most important aspects of process technology and technical equipment, alongside contributions on workpiece requirements for optimal galvanization results and methods for applying additional protective coatings to the galvanized pieces.


With over 200 illustrated examples, step-by-step instructions, presentations and reference tables, this is essential reading for apprentices and professionals alike.


Table of Contents

Export Citation(s)

Free Access

Front Matter (Pages: I-XXIII)

Summary

PDF

Request permissions

CHAPTER 1

Corrosion and Corrosion Protection (Pages: 1-19)

Dr. Peter Maaß

Summary

PDF

Request permissions

CHAPTER 2

Historical Development of Hot-Dip Galvanizing (Pages: 21-28)

Dr. Peter Maaß

Summary

PDF

References

Request permissions

CHAPTER 3

Surface-Preparation Technology (Pages: 29-90)

Dr. Peter Peißker

Summary

PDF

References

Request permissions

CHAPTER 4

Hot-Dip Galvanizing and Layer-Formation Technology (Pages: 91-124)

W.-D. Schulz,  M. Thiele

Summary

PDF

References

Request permissions

CHAPTER 5

Technical Equipment (Pages: 125-183)

R. Mintert,  Peter Peißker

Summary

PDF

References

Request permissions

CHAPTER 6

Environmental Protection and Occupational Safety in Hot-Dip Galvanizing Plants (Pages: 185-237)

C. Kaßner

Summary

PDF

References

Request permissions

CHAPTER 7

Design and Manufacturing according to Hot-Dip Galvanizing Requirements (Pages: 239-289)

G. Scheer,  M. Huckshold

Summary

PDF

References

Request permissions

CHAPTER 8

Quality Management in Hot-Dip Galvanizing Companies (Pages: 291-301)

G. Halm

Summary

PDF

References

Request permissions

CHAPTER 9

Corrosion behavior of Zinc Coatings (Pages: 303-348)

H.-J. Böttcher,  W. Friehe,  D. Horstmann,  C.-L. Kruse,  W. Schwenk,  W.-D. Schulz

Summary

PDF

References

Request permissions

CHAPTER 10

Coatings on Zinc Layers – Duplex-Systems (Pages: 349-370)

A. Schneider

Summary

PDF

References

Request permissions

CHAPTER 11

Economic Efficiency of Hot-Dip Galvanizing (Pages: 371-377)

Peter Maaß

Summary

PDF

References

Request permissions

CHAPTER 12

Examples of Use (Pages: 379-401)

Dr. Peter Maaß

Summary

PDF

Request permissions

CHAPTER 13

Appendix (Pages: 403-441)

Dr. Peter Maaß

Summary

PDF

Request permissions

Free Access

Index (Pages: 443-460)

First Page

PDF

Request permissions



Contents

Preface to the Third German Edition  XVII

Acknowledgment  XIX

Preface to the Second German Edition  XXI

List of Contributors  XXIII

1  Corrosion and Corrosion Protection  1

Peter Maaß

1.1 Corrosion  1

1.1.1 Causes of Corrosion  1

1.1.2 Types of Corrosion  2

1.1.3 Corrosion Phenomena  3

1.1.4 Corrosive Stress  4

1.1.4.1 Atmospheric Corrosion  5

1.1.4.2  Corrosion in the Soil  5

1.1.4.3 Corrosion in Water  6

1.1.4.4 Special Corrosive Stress  7

1.1.4.5  Avoidance of Corrosion Damages  7

1.2 Corrosion Protection  7

1.2.1 Procedures  7

1.2.1.1 Active Procedures  7

1.2.1.2 Passive Procedures  9

1.2.2 Commercial Relevance  10

1.2.3  Corrosion Protection and Environmental Protection  18

Appendix 1.A  18

2  Historical Development of Hot-dip Galvanizing  21

Peter Maaß

References  27

3 Surface-preparation Technology  29

Peter Peißker

V

VI Contents

3.1 As-delivered Condition  30

3.1.1 Basic Material  30

3.1.1.1 Steel Composition  30

3.1.2 Surface Finish  31

3.1.2.1 Similar Contaminants  31

3.1.2.2 Dissimilar Contaminants  32

3.1.2.3  Defects on Steel Substrates  34

3.1.3 Steel Surface Roughness  35

3.2 Mechanical Surface-preparation Methods  35

3.2.1 Blast Cleaning  35

3.2.2 Barrel Finishing  36

3.3  Chemical Cleaning and Degreasing  37

3.3.1 Alkaline Cleaner  40

3.3.1.1 Composition  40

3.3.1.2 Water  41

3.3.1.3 Working Conditions  42

3.3.1.4  Analytical Control, Service Life, Recycling  44

3.3.2 Biological Cleaning  48

3.3.3 Pickle Degreasing  49

3.3.4 Other Cleaning Methods  51

3.4  Rinsing of the Parts  51

3.4.1 Carryover  52

3.4.1.1 Surface Data  52

3.4.1.2 Withdrawal, Dripping  52

3.4.1.3 Carryover  52

3.4.2  Calculation of Rinsing Processes  53

3.4.3 Rinsewater Recirculation  56

3.5 Pickling  57

3.5.1  Material and Surface Condition  58

3.5.1.1  Structure of the Oxide Layer  58

3.5.1.2  The Material Steel  58

3.5.1.3 Topography  60

3.5.2 Hydrochloric-acid Pickle  61

3.5.2.1 Composition  62

3.5.2.2 Pickling Conditions  64

3.5.2.3  Inhibition and Hydrogen Embrittlement  71

3.5.2.4  Analytical Control, Recycling, Utilization of Residual Material  75

3.5.3  Preparation of Cast Materials  79

3.5.4 Dezincification  80

3.6 Hot-dip Galvanizing Fluxes  81

3.6.1 Fluxes on ZnCl2/NH4

Cl Basis  81

3.6.1.1 Dry Galvanizing  82

3.6.1.2 Wet Galvanizing  83

3.6.2 The ZnCl2

/NaCl/KCl System  84

3.6.3 Flux-induced Residues  84

Contents  VII

References  85

Standards  89

Lifting Devices  90

4  Hot-dip Galvanizing and Layer-formation Technology  91

W.-D. Schulz and M. Thiele

4.1 Process Variants  91

4.1.1  Continuous Hot-dip Galvanizing of Steel Strips and Steel Wire  91

4.1.2 Batch Galvanizing  94

4.1.2.1  Dry Galvanizing Process  94

4.1.2.2  Wet Galvanizing Process  94

4.1.3 Special Processes  97

4.2  Layer Formation in Hot-dip Batch Galvanizing Between 435 °C and 

620 °C  98

4.2.1 General Notes  98

4.2.1.1  Low-silicon Range (<0.035% Si)  100

4.2.1.2  Sandelin Range (0.035–0.12% Si)  101

4.2.1.3  Sebisty Range (0.12–0.28% Si)  101

4.2.1.4 High-silicon Range (>0.28% Si)  101

4.2.2 Influence of Melting Temperature and Immersion Time on Layer 

Thickness  102

4.2.3 Influence of Heat Treatment of Steels Prior to Galvanizing  106

4.2.4  High-temperature Galvanizing above 530 °C  107

4.2.5 Structural Analyses  108

4.2.5.1  Crystalline Structure in the Temperature Range of 435–490 °C  108

4.2.5.2  Crystalline Structure in the Temperature Range of 490–530 °C  110

4.2.5.3  Crystalline Structure in the High-temperature Range of 

530–620 °C  111

4.2.6  Holistic Theory of Layer Formation  114

4.2.6.1  Normal Temperature Range between 435 and 490 °C  114

4.2.6.2  Temperature Range between 490 °C and 530 °C  115

4.2.6.3  High-temperature Range between 530 °C and 620 °C  115

4.2.7 Influence of Alloying Elements of the Melt on Layer Formation  117

4.2.7.1 Conventional Zinc Melts  117

4.2.7.2 Alloyed Zinc Melts  117

4.3 Liquid-metal-induced Embrittlement (LME)  120

4.4 After-treatment  122

References  122

5 Technical Equipment  125

R. Mintert and Peter Peißker

5.1 Preliminary Planning  125

5.1.1 Preliminary Study  125

5.1.2 Intensive Study  125

5.1.3 Application for Approval  126

VIII Contents

5.2  Layout Variants of Plants  126

5.2.1 Linear Arrangement  126

5.2.2 U-Shaped Arrangement  126

5.2.3 Mounting Area  130

5.2.4 Frames, Crossbeams, Auxiliary Devices  130

5.2.4.1 Feeding Devices  133

5.2.4.2  Typical Examples for Frames and Crossbeams  134

5.2.5  Automatic Batch Galvanizing Plant  136

5.3 Pretreatment Plant  137

5.3.1 Pretreatment Units  137

5.3.2 Pickling Housing  139

5.3.3  Heat Supply of Pretreatment Baths  140

5.3.4  Favorable Tank Covers  142

5.4 Drying Furnaces  142

5.5 Galvanizing Furnaces  145

5.5.1  Immersion burners for heating of ceramic bath for zinc and zinc/

aluminum  145

5.5.2  Galvanizing Furnaces with Circulating Heating  146

5.5.3  Galvanizing Furnaces with Surface Heating  146

5.5.4  Galvanizing Furnaces with Impulse Burner Heating  148

5.5.5  Galvanizing Furnace with Induction Heating  148

5.5.6  Galvanizing Furnace with Resistance Heating  149

5.5.7  Galvanizing Furnaces with Channel Inductor  149

5.5.8  Service Plan: Galvanizing Kettle  150

5.6 Galvanizing Kettle  155

5.7  Zinc Bath Housings  155

5.7.1  Transverse Housing, Stationary  157

5.7.1.1  Housing with Hinged or Sliding Covers  157

5.7.2  Transverse Housing, Crane Displaceable  158

5.7.3 Longitudinal Housing  159

5.8 After-treatment  159

5.9 Unloading Area  160

5.10 Crossbeam Return  160

5.11 Crane Units  160

5.11.1  Adaptation of Crane Systems to the Galvanizing Operation  161

5.11.2 Equipment Overview  161

5.12 Filtration Plants  163

5.13  Semiautomatic Galvanizing Lines for Small Parts  164

5.14  Galvanizing Furnace with Ceramic Trough  165

5.15  Automatic Galvanizing Line for Small Parts  169

5.15.1  Fully Automatic Galvanizing Plants for High-Precision Bolts  169

5.15.2  Automatic Robot-operated Centrifugal Galvanizing Line  170

5.16 Pipe Galvanizing Line  170

5.17 Application of Vibrators  172

5.18 Energy Balance  174

Contents  IX

5.19  Commissioning and Decommissioning of a Hot-dip Galvanizing Kettle, 

Kettle Change, Method of Operation  176

5.19.1  Hot-dip Galvanizing Kettles and Galvanizing Furnaces  176

5.19.2 Commissioning  177

5.19.3 Optimum Operation  179

5.19.4 Efficient Energy Consumption and Service Life of the Kettle  180

5.19.5 Decommissioning  181

5.19.6 Galvanizing Kettle Failure  182

References  183

6  Environmental Protection and Occupational Safety in 

Hot-dip Galvanizing Plants 185

C. Kaßner

6.1  Rules and Measures Concerning Air-pollution Control  185

6.1.1 Rules  185

6.1.2 Authorizations  187

6.2  Measures for the Control of Air Pollution  188

6.2.1  Ventilation Equipment in the Hot-dip Galvanizing Industry  188

6.2.1.1 Ventilation Systems  189

6.2.1.2 Collection Systems  191

6.2.1.3 Restraint Systems  196

6.2.1.4  Induced Draft Fans  207

6.2.1.5 Discharge of Emissions  208

6.3 Measuring Systems  210

6.3.1 Emission Measurement  210

6.3.2  Measurement in the Working Area  210

6.3.3 Trend Measuring  211

6.4  Waste and Residual Materials  211

6.4.1 General Notes  211

6.4.2  Oily Wastes/Residual Materials from Degreasing  213

6.4.2.1  Oily Waste /Residues from Degreasing Bathes  213

6.4.2.2  Oil- and Grease-containing Sludge and Concentrates  213

6.4.3 Spent Pickling Solutions  213

6.4.4  Wastes/Flux Treatment Residues  214

6.4.4.1  Spent Flux Baths  214

6.4.4.2 Iron-hydroxide Sludge  215

6.4.5 Wastes/Galvanizing Residues  215

6.4.5.1 Dross  215

6.4.5.2 Zinc Ash  215

6.4.5.3 Spattered Zinc  216

6.4.6 Further Wastes/Residues  216

6.5 Noise  216

6.5.1 General Notes  216

6.5.2  Noise Protection in Hot-dip Galvanizing Plants  218

6.5.2.1 Personal Protection Equipment  218

X Contents

6.5.2.2 Operational Measures  218

6.6 Occupational Safety  219

6.6.1 General Notes  219

6.6.1.1 Legal Foundations  219

6.6.1.2  Accidents in Hot-dip Galvanizing Companies  219

6.6.1.3 Accident Costs  220

6.6.2  Equipment of the Hot-dip Galvanizing Company  221

6.6.2.1 General Notes  221

6.6.2.2  Workrooms and Working Areas  221

6.6.2.3 Open Baths  221

6.6.2.4 Feeding Devices  222

6.6.3 Operating Instructions/General Instructions  223

6.6.4 Personal Protection Equipment  223

6.6.5  Personal Rules of Conduct  223

6.6.6  Handling of Hazardous Substances  227

6.6.7  Safety Marking at the Workplace  228

6.6.8  Statutory Representative for Environmental and Labor Protection  228

6.7  Practical Measures for Environmental Protection  230

References  234

Further References  237

7  Design and Manufacturing According to Hot-dip 

Galvanizing Requirements  239

G. Scheer and M. Huckshold

7.1 General Notes  239

7.2  Requirements Regarding Surface Quality of the Basic Material  241

7.2.1 General Notes  241

7.2.2  Removal of Dissimilar Layers  241

7.2.2.1 Oils and Greases  241

7.2.2.2  Welding Slag and Welding Tools  241

7.2.2.3  Blasting, Abrasive Residues  242

7.2.2.4  Paint, Old Coatings, Markings  242

7.2.3 Surface Roughness  243

7.2.4 Shells, Scales, Overlaps  243

7.3  Dimensions and Weights of Material to be Galvanized  244

7.3.1 General Notes  244

7.3.2  Bath Dimensions, Piece Weights  244

7.3.3  Bulky Parts, Oversized Parts  245

7.3.4 Suspensions  246

7.4  Containers and Tubular Constructions (Hollow Bodies)  247

7.4.1 General Notes  247

7.4.2 Tubular Constructions  247

7.4.3  External Galvanizing of Tubes and Containers  248

7.4.4 Containers  249

7.5 Steel Profile Constructions  251

Contents  XI

7.5.1 Materials/Material Thickness/Stress  251

7.5.2 Surface Preparation  251

7.5.3 Overlaps  252

7.5.4  Free Punches and Flow Apertures  252

7.6  Steel Sheet and Steel Wire  255

7.6.1 Sheet Steelware  255

7.6.1.1 Joining Methods  255

7.6.1.2 Design  255

7.6.2 Wire Products  257

7.7  Constructions of Hot-dip Galvanized Semifinished Products  257

7.7.1 Requirements  258

7.7.2 Processing  259

7.8  Avoidance of Distortion and Crack Formation  260

7.8.1 Coherences  260

7.8.2 Remedies  262

7.8.3  Reduction of Distortion/Crack Risk in Large Steel Constructions  263

7.9  Welding Before and After Hot-dip Galvanizing  265

7.9.1  Welding Before Hot-dip Galvanizing  265

7.9.1.1 General Notes  265

7.9.1.2 Sources of Defects  265

7.9.1.3 Welding Practice  266

7.9.2  Welding After Hot-dip Galvanizing  268

7.9.2.1 General Notes  268

7.9.2.2 Welding Practice  268

7.10  Hot-dip Galvanizing of Small Parts  270

7.10.1 Methods  270

7.10.2  What are Small Parts?  271

7.10.3  Appearance and Surface Quality  271

7.10.4 Products  271

7.10.4.1 Fasteners  271

7.10.4.2  Nails, Pivots, Discs, Hooks, etc.  272

7.10.4.3  Small Parts of Sectional Steel, Bar Steel and Sheet  272

7.10.4.4 Chains  273

7.11  Reworking and Repair of Zinc Coatings  273

7.11.1  Zinc Ridges, Drainage Runs  273

7.11.2  Hinges and Thread Bolts  273

7.11.3 Imperfections and Damages  274

7.12  Hot-dip Galvanizing of Cast Materials  276

7.13  Local Avoidance of Zinc Adherence  277

7.14 Standards and Guidelines  278

7.14.1  DIN EN ISO 1461 and National Supplement 1 (Notes)  278

7.14.2  DIN EN ISO 14713  281

7.14.3 Further Standards  281

7.15  Defects and Avoiding Defects  282

7.15.1 Extraneous Rust  282

XII Contents

7.15.2 Grinding Sparks  284

7.15.3 Cracks in Workpieces  284

7.15.4  Dissimilar Layers on the Steel Structure  284

7.15.5 Thermal Impacts  286

7.15.6  Damages through Straightening Work  287

7.15.7  Galvanizing Defects through Air Inclusions  287

7.15.8 Unprotected Fasteners  287

References  288

8  Quality Management in Hot-dip Galvanizing Companies  291

G. Halm

8.1  Why Quality Management?  291

8.2 Important Criteria  292

8.3  Structure of the QM System according to DIN EN ISO 

9001:2000  292

8.4  Short Description of QM Elements Sections 4–8  294

8.4.1 Documentation Requirements Section 4  294

8.4.2  Management Responsibilities Section 5  295

8.4.3  Resource Management Section 6  295

8.4.4  Product Realization Section 7  295

8.4.5  Measuring, Analysis and Improvement Section 8  296

8.5  Introduction of QM Systems  300

8.6 Trends  300

Acknowledgment  301

References  301

9  Corrosion Behavior of Zinc Coatings  303

H.-J. Böttcher, W. Friehe, D. Horstmann, C.-L. Kruse, W. Schwenk, and 

W.-D. Schulz

9.1  Corrosion – Chemical  Properties  303

9.1.1 General Notes  303

9.1.2  Basic Principles of Corrosion in Waters  305

9.1.3 Thermodynamic Fundamentals  309

9.1.4 Bimetallic Corrosion  312

9.1.5 Thermal Resistance  313

9.1.6 Mechanical Resistance  314

9.2  Corrosion Caused by Atmosphere  314

9.2.1 General Notes  314

9.2.2  Corrosion Caused by Natural Weathering  315

9.2.2.1  Corrosion Caused by Natural Weathering without Rain 

Protection  316

9.2.2.2  Corrosion in Natural Weathering with Rain Protection  319

9.2.3 Indoor Corrosion  320

9.2.3.1  Interior Rooms without Air Conditioning  320

9.2.3.2  Interior Rooms with Air Conditioning  321

Contents  XIII

9.2.4 White-rust Formation  321

9.2.5  Corrosion Due to Drain Water  324

9.3 Corrosion through Water  324

9.3.1 Drinking Water  324

9.3.2 Swimming-pool Water  326

9.3.3 Open Cooling Systems  326

9.3.4  Closed Heating and Cooling Systems  327

9.3.5 Wastewater  327

9.3.5.1 Rainwater  327

9.3.5.2 Domestic Wastewater  327

9.3.5.3 Wastewater Treatment Plants  328

9.3.6 Seawater  328

9.3.6.1 Cover-layer Formation  329

9.3.6.2 Blistering  329

9.3.6.3 Duplex-Systems  330

9.4  Corrosion in Soils  330

9.4.1 Free-corrosion Behavior  331

9.4.2  Potential Dependence of the Corrosion Rate  332

9.4.3  Reaction to Element Formation and Stray Current Impact  333

9.4.4  Reaction to the Impact of Alternating Current  333

9.5  Corrosion Resistance to Concrete  334

9.6  Corrosion in Agricultural Facilities and Caused by Agricultural 

Products  336

9.6.1  Buildings and Barn Equipment  337

9.6.2 Storage and Transport  337

9.6.3 Foodstuffs  338

9.7  Corrosion through Nonaqueous Media  338

9.8  Corrosion Protection Measures at Defective Spots  340

9.8.1 General Notes  340

9.8.2 Repair Methods  340

9.8.2.1  Thermal Spraying with Zinc  341

9.8.2.2  Application of Coating Materials  341

9.8.2.3 Application of Solders  341

9.9  Examination of Corrosion Resistance and Quality Test  342

9.9.1 Appearance  342

9.9.2 Layer Thickness  342

9.9.3 Adhesiveness  343

References  343

10  Coatings on Zinc Layers – Duplex-Systems  349

A. Schneider

10.1  Fundamentals, Use, Main Fields of Application  349

10.2 Definitions of Terms  352

10.3  Protection Period of Duplex-Systems  353

10.4  Special Features of the Constructive Design of Components  353

XIV Contents

10.5  Quality Requirements for the Zinc Coating for Protective Paint 

Layers  355

10.6  Surface Preparation of the Zinc Coating for the Protective 

Paint  356

10.6.1  Contaminations on the Zinc Coating  356

10.6.2 Surface-preparation Methods  357

10.6.3  Description of Practically Applied Surface-preparation Methods  359

10.6.3.1 Sweep-blasting  359

10.6.3.2  High-pressure Water Jet or Steam Blasting  360

10.6.3.3  Grinding with Abrasive Fleece  361

10.6.3.4 Chemical Conversion  362

10.6.4 Classification of Surface Preparation and Protective Paint Coating in 

the Manufacturing Technology  363

10.6.4.1  Protective Paint Systems with Liquid Coating Materials  363

10.6.4.2  Protective Paint Systems with Powder Coating Materials  364

10.7  Coating Materials, Protective Paint Systems  364

References  369

11 Economic Efficiency of Hot-dip Galvanizing  371

Peter Maaß

References  377

12 Examples of Use  379

Peter Maaß

12.1 Building Construction  380

12.2 Civil Engineering  383

12.3 Traffic Engineering  385

12.4 Sport/Leisure  388

12.5 Plant Engineering  389

12.6 Mining  390

12.7 Energy Supply  391

12.8 Agriculture  393

12.9 Component Parts/Fasteners  394

12.10 Environmental Protection  396

12.11 Handicraft  397

12.12 Art  399

12.13 Continuous-sheet Galvanizing  400

12.14 Conclusion  401

13 Appendix  403

Peter Maaß

 Appendix A Defect Occurrence on Zinc Coatings and at Hot-dip  Galvanized Workpieces  403

13.1  Requirements for the Zinc Coating  403

13.1.1 Design  403

Contents  XV

13.1.2 Workpiece Properties  404

13.1.3 Coating Properties  404

13.1.4 Layer Thickness  404

13.1.5 Repairs  404

13.1.6 Adhesiveness  405

13.2  Assessment Criteria for Hot-dip Galvanized Coatings on Steel 

Structures  405

13.3  Major Defects in the Zinc Coating or at the Hot-dip Galvanized 

Workpiece 406

13.3.1  Defects Originating from the Design of the Workpiece  406

13.3.1.1 Accumulations (Zinc Build-up)  406

13.3.1.2 Blocked Boreholes  407

13.3.1.3 Metal Embrittlement  407

13.3.1.4 Flash  407

13.3.1.5 Closed Hollow Bodies  407

13.3.1.6 Burned Castings  408

13.3.1.7 Distortion  408

13.3.1.8 Efflorescence of Salts  408

13.3.1.9  Inclusions of Pickle and Flux Residues  408

13.3.2  Defects Originating from Surface Coverings on the Workpiece  409

13.3.2.1  Defects due to Paint, Oil Crayon, Tar, etc.  409

13.3.2.2  Defects due to Grease and Oil  409

13.3.2.3  Defects due to Welding Slag  409

13.3.2.4 Black Areas  409

13.3.3  Defects Arising due to the Process Engineering Applied in Hot-dip 

Galvanizing  409

13.3.3.1 Ash, Flux  409

13.3.3.2 Thick Zinc Coating  410

13.3.3.3 Thin Zinc Coating  410

13.3.3.4 Peeling  410

13.3.3.5 Sticking Points  410

13.3.3.6 Pimples  411

13.3.3.7 Rough Surface  411

13.3.3.8  Formation of Tears and Sags  411

13.3.3.9 Drainage Runs, Drops, Points  411

13.3.4  Defects Caused by Transport, Storage and Assembly  412

13.3.4.1 Extraneous Rust  412

13.3.4.2 White Rust  412

13.3.4.3 Flaking  413

13.3.4.4 Brown Staining  413

13.3.4.5 Blistering  413

13.3.5  Handling and Assembly of Hot-dip Galvanized 

Components  414

 Appendix B Information Centers in the Federal Republic of  Germany  416

XVI Contents

 Appendix C Hot-dip Galvanizing Companies in Germany as of  15/8/2005 Source: Institut für Feuerverzinken GmbH  419

 Appendix D Worldwide Galvanizing Associations 439

Index  443










EBOOK - Handbook of Hot‐Dip Galvanization (Dr. Peter Maaß) 2011.


LINK DOWNLOAD (TÀI LIỆU VIP MEMBER)


EBOOK - Handbook of Hot‐Dip Galvanization (Dr. Peter Maaß) 2011 (SCAN).


LINK DOWNLOAD (TÀI LIỆU VIP MEMBER)



Sổ tay về mạ kẽm nhúng nóng.


Hot-dip galvanization is a method for coating steel workpieces with a protective zinc film to enhance the corrosion resistance and to improve the mechanical material properties. Hot-dip galvanized steel is the material of choice underlying many modern buildings and constructions, such as train stations, bridges and metal domes.

Based on the successful German version, this edition has been adapted to include international standards, regulations and best practices. The book systematically covers all steps in hot-dip galvanization: surface pre-treatment, process and systems technology, environmental issues, and quality management. As a result, the reader finds the fundamentals as well as the most important aspects of process technology and technical equipment, alongside contributions on workpiece requirements for optimal galvanization results and methods for applying additional protective coatings to the galvanized pieces.


With over 200 illustrated examples, step-by-step instructions, presentations and reference tables, this is essential reading for apprentices and professionals alike.


Table of Contents

Export Citation(s)

Free Access

Front Matter (Pages: I-XXIII)

Summary

PDF

Request permissions

CHAPTER 1

Corrosion and Corrosion Protection (Pages: 1-19)

Dr. Peter Maaß

Summary

PDF

Request permissions

CHAPTER 2

Historical Development of Hot-Dip Galvanizing (Pages: 21-28)

Dr. Peter Maaß

Summary

PDF

References

Request permissions

CHAPTER 3

Surface-Preparation Technology (Pages: 29-90)

Dr. Peter Peißker

Summary

PDF

References

Request permissions

CHAPTER 4

Hot-Dip Galvanizing and Layer-Formation Technology (Pages: 91-124)

W.-D. Schulz,  M. Thiele

Summary

PDF

References

Request permissions

CHAPTER 5

Technical Equipment (Pages: 125-183)

R. Mintert,  Peter Peißker

Summary

PDF

References

Request permissions

CHAPTER 6

Environmental Protection and Occupational Safety in Hot-Dip Galvanizing Plants (Pages: 185-237)

C. Kaßner

Summary

PDF

References

Request permissions

CHAPTER 7

Design and Manufacturing according to Hot-Dip Galvanizing Requirements (Pages: 239-289)

G. Scheer,  M. Huckshold

Summary

PDF

References

Request permissions

CHAPTER 8

Quality Management in Hot-Dip Galvanizing Companies (Pages: 291-301)

G. Halm

Summary

PDF

References

Request permissions

CHAPTER 9

Corrosion behavior of Zinc Coatings (Pages: 303-348)

H.-J. Böttcher,  W. Friehe,  D. Horstmann,  C.-L. Kruse,  W. Schwenk,  W.-D. Schulz

Summary

PDF

References

Request permissions

CHAPTER 10

Coatings on Zinc Layers – Duplex-Systems (Pages: 349-370)

A. Schneider

Summary

PDF

References

Request permissions

CHAPTER 11

Economic Efficiency of Hot-Dip Galvanizing (Pages: 371-377)

Peter Maaß

Summary

PDF

References

Request permissions

CHAPTER 12

Examples of Use (Pages: 379-401)

Dr. Peter Maaß

Summary

PDF

Request permissions

CHAPTER 13

Appendix (Pages: 403-441)

Dr. Peter Maaß

Summary

PDF

Request permissions

Free Access

Index (Pages: 443-460)

First Page

PDF

Request permissions



Contents

Preface to the Third German Edition  XVII

Acknowledgment  XIX

Preface to the Second German Edition  XXI

List of Contributors  XXIII

1  Corrosion and Corrosion Protection  1

Peter Maaß

1.1 Corrosion  1

1.1.1 Causes of Corrosion  1

1.1.2 Types of Corrosion  2

1.1.3 Corrosion Phenomena  3

1.1.4 Corrosive Stress  4

1.1.4.1 Atmospheric Corrosion  5

1.1.4.2  Corrosion in the Soil  5

1.1.4.3 Corrosion in Water  6

1.1.4.4 Special Corrosive Stress  7

1.1.4.5  Avoidance of Corrosion Damages  7

1.2 Corrosion Protection  7

1.2.1 Procedures  7

1.2.1.1 Active Procedures  7

1.2.1.2 Passive Procedures  9

1.2.2 Commercial Relevance  10

1.2.3  Corrosion Protection and Environmental Protection  18

Appendix 1.A  18

2  Historical Development of Hot-dip Galvanizing  21

Peter Maaß

References  27

3 Surface-preparation Technology  29

Peter Peißker

V

VI Contents

3.1 As-delivered Condition  30

3.1.1 Basic Material  30

3.1.1.1 Steel Composition  30

3.1.2 Surface Finish  31

3.1.2.1 Similar Contaminants  31

3.1.2.2 Dissimilar Contaminants  32

3.1.2.3  Defects on Steel Substrates  34

3.1.3 Steel Surface Roughness  35

3.2 Mechanical Surface-preparation Methods  35

3.2.1 Blast Cleaning  35

3.2.2 Barrel Finishing  36

3.3  Chemical Cleaning and Degreasing  37

3.3.1 Alkaline Cleaner  40

3.3.1.1 Composition  40

3.3.1.2 Water  41

3.3.1.3 Working Conditions  42

3.3.1.4  Analytical Control, Service Life, Recycling  44

3.3.2 Biological Cleaning  48

3.3.3 Pickle Degreasing  49

3.3.4 Other Cleaning Methods  51

3.4  Rinsing of the Parts  51

3.4.1 Carryover  52

3.4.1.1 Surface Data  52

3.4.1.2 Withdrawal, Dripping  52

3.4.1.3 Carryover  52

3.4.2  Calculation of Rinsing Processes  53

3.4.3 Rinsewater Recirculation  56

3.5 Pickling  57

3.5.1  Material and Surface Condition  58

3.5.1.1  Structure of the Oxide Layer  58

3.5.1.2  The Material Steel  58

3.5.1.3 Topography  60

3.5.2 Hydrochloric-acid Pickle  61

3.5.2.1 Composition  62

3.5.2.2 Pickling Conditions  64

3.5.2.3  Inhibition and Hydrogen Embrittlement  71

3.5.2.4  Analytical Control, Recycling, Utilization of Residual Material  75

3.5.3  Preparation of Cast Materials  79

3.5.4 Dezincification  80

3.6 Hot-dip Galvanizing Fluxes  81

3.6.1 Fluxes on ZnCl2/NH4

Cl Basis  81

3.6.1.1 Dry Galvanizing  82

3.6.1.2 Wet Galvanizing  83

3.6.2 The ZnCl2

/NaCl/KCl System  84

3.6.3 Flux-induced Residues  84

Contents  VII

References  85

Standards  89

Lifting Devices  90

4  Hot-dip Galvanizing and Layer-formation Technology  91

W.-D. Schulz and M. Thiele

4.1 Process Variants  91

4.1.1  Continuous Hot-dip Galvanizing of Steel Strips and Steel Wire  91

4.1.2 Batch Galvanizing  94

4.1.2.1  Dry Galvanizing Process  94

4.1.2.2  Wet Galvanizing Process  94

4.1.3 Special Processes  97

4.2  Layer Formation in Hot-dip Batch Galvanizing Between 435 °C and 

620 °C  98

4.2.1 General Notes  98

4.2.1.1  Low-silicon Range (<0.035% Si)  100

4.2.1.2  Sandelin Range (0.035–0.12% Si)  101

4.2.1.3  Sebisty Range (0.12–0.28% Si)  101

4.2.1.4 High-silicon Range (>0.28% Si)  101

4.2.2 Influence of Melting Temperature and Immersion Time on Layer 

Thickness  102

4.2.3 Influence of Heat Treatment of Steels Prior to Galvanizing  106

4.2.4  High-temperature Galvanizing above 530 °C  107

4.2.5 Structural Analyses  108

4.2.5.1  Crystalline Structure in the Temperature Range of 435–490 °C  108

4.2.5.2  Crystalline Structure in the Temperature Range of 490–530 °C  110

4.2.5.3  Crystalline Structure in the High-temperature Range of 

530–620 °C  111

4.2.6  Holistic Theory of Layer Formation  114

4.2.6.1  Normal Temperature Range between 435 and 490 °C  114

4.2.6.2  Temperature Range between 490 °C and 530 °C  115

4.2.6.3  High-temperature Range between 530 °C and 620 °C  115

4.2.7 Influence of Alloying Elements of the Melt on Layer Formation  117

4.2.7.1 Conventional Zinc Melts  117

4.2.7.2 Alloyed Zinc Melts  117

4.3 Liquid-metal-induced Embrittlement (LME)  120

4.4 After-treatment  122

References  122

5 Technical Equipment  125

R. Mintert and Peter Peißker

5.1 Preliminary Planning  125

5.1.1 Preliminary Study  125

5.1.2 Intensive Study  125

5.1.3 Application for Approval  126

VIII Contents

5.2  Layout Variants of Plants  126

5.2.1 Linear Arrangement  126

5.2.2 U-Shaped Arrangement  126

5.2.3 Mounting Area  130

5.2.4 Frames, Crossbeams, Auxiliary Devices  130

5.2.4.1 Feeding Devices  133

5.2.4.2  Typical Examples for Frames and Crossbeams  134

5.2.5  Automatic Batch Galvanizing Plant  136

5.3 Pretreatment Plant  137

5.3.1 Pretreatment Units  137

5.3.2 Pickling Housing  139

5.3.3  Heat Supply of Pretreatment Baths  140

5.3.4  Favorable Tank Covers  142

5.4 Drying Furnaces  142

5.5 Galvanizing Furnaces  145

5.5.1  Immersion burners for heating of ceramic bath for zinc and zinc/

aluminum  145

5.5.2  Galvanizing Furnaces with Circulating Heating  146

5.5.3  Galvanizing Furnaces with Surface Heating  146

5.5.4  Galvanizing Furnaces with Impulse Burner Heating  148

5.5.5  Galvanizing Furnace with Induction Heating  148

5.5.6  Galvanizing Furnace with Resistance Heating  149

5.5.7  Galvanizing Furnaces with Channel Inductor  149

5.5.8  Service Plan: Galvanizing Kettle  150

5.6 Galvanizing Kettle  155

5.7  Zinc Bath Housings  155

5.7.1  Transverse Housing, Stationary  157

5.7.1.1  Housing with Hinged or Sliding Covers  157

5.7.2  Transverse Housing, Crane Displaceable  158

5.7.3 Longitudinal Housing  159

5.8 After-treatment  159

5.9 Unloading Area  160

5.10 Crossbeam Return  160

5.11 Crane Units  160

5.11.1  Adaptation of Crane Systems to the Galvanizing Operation  161

5.11.2 Equipment Overview  161

5.12 Filtration Plants  163

5.13  Semiautomatic Galvanizing Lines for Small Parts  164

5.14  Galvanizing Furnace with Ceramic Trough  165

5.15  Automatic Galvanizing Line for Small Parts  169

5.15.1  Fully Automatic Galvanizing Plants for High-Precision Bolts  169

5.15.2  Automatic Robot-operated Centrifugal Galvanizing Line  170

5.16 Pipe Galvanizing Line  170

5.17 Application of Vibrators  172

5.18 Energy Balance  174

Contents  IX

5.19  Commissioning and Decommissioning of a Hot-dip Galvanizing Kettle, 

Kettle Change, Method of Operation  176

5.19.1  Hot-dip Galvanizing Kettles and Galvanizing Furnaces  176

5.19.2 Commissioning  177

5.19.3 Optimum Operation  179

5.19.4 Efficient Energy Consumption and Service Life of the Kettle  180

5.19.5 Decommissioning  181

5.19.6 Galvanizing Kettle Failure  182

References  183

6  Environmental Protection and Occupational Safety in 

Hot-dip Galvanizing Plants 185

C. Kaßner

6.1  Rules and Measures Concerning Air-pollution Control  185

6.1.1 Rules  185

6.1.2 Authorizations  187

6.2  Measures for the Control of Air Pollution  188

6.2.1  Ventilation Equipment in the Hot-dip Galvanizing Industry  188

6.2.1.1 Ventilation Systems  189

6.2.1.2 Collection Systems  191

6.2.1.3 Restraint Systems  196

6.2.1.4  Induced Draft Fans  207

6.2.1.5 Discharge of Emissions  208

6.3 Measuring Systems  210

6.3.1 Emission Measurement  210

6.3.2  Measurement in the Working Area  210

6.3.3 Trend Measuring  211

6.4  Waste and Residual Materials  211

6.4.1 General Notes  211

6.4.2  Oily Wastes/Residual Materials from Degreasing  213

6.4.2.1  Oily Waste /Residues from Degreasing Bathes  213

6.4.2.2  Oil- and Grease-containing Sludge and Concentrates  213

6.4.3 Spent Pickling Solutions  213

6.4.4  Wastes/Flux Treatment Residues  214

6.4.4.1  Spent Flux Baths  214

6.4.4.2 Iron-hydroxide Sludge  215

6.4.5 Wastes/Galvanizing Residues  215

6.4.5.1 Dross  215

6.4.5.2 Zinc Ash  215

6.4.5.3 Spattered Zinc  216

6.4.6 Further Wastes/Residues  216

6.5 Noise  216

6.5.1 General Notes  216

6.5.2  Noise Protection in Hot-dip Galvanizing Plants  218

6.5.2.1 Personal Protection Equipment  218

X Contents

6.5.2.2 Operational Measures  218

6.6 Occupational Safety  219

6.6.1 General Notes  219

6.6.1.1 Legal Foundations  219

6.6.1.2  Accidents in Hot-dip Galvanizing Companies  219

6.6.1.3 Accident Costs  220

6.6.2  Equipment of the Hot-dip Galvanizing Company  221

6.6.2.1 General Notes  221

6.6.2.2  Workrooms and Working Areas  221

6.6.2.3 Open Baths  221

6.6.2.4 Feeding Devices  222

6.6.3 Operating Instructions/General Instructions  223

6.6.4 Personal Protection Equipment  223

6.6.5  Personal Rules of Conduct  223

6.6.6  Handling of Hazardous Substances  227

6.6.7  Safety Marking at the Workplace  228

6.6.8  Statutory Representative for Environmental and Labor Protection  228

6.7  Practical Measures for Environmental Protection  230

References  234

Further References  237

7  Design and Manufacturing According to Hot-dip 

Galvanizing Requirements  239

G. Scheer and M. Huckshold

7.1 General Notes  239

7.2  Requirements Regarding Surface Quality of the Basic Material  241

7.2.1 General Notes  241

7.2.2  Removal of Dissimilar Layers  241

7.2.2.1 Oils and Greases  241

7.2.2.2  Welding Slag and Welding Tools  241

7.2.2.3  Blasting, Abrasive Residues  242

7.2.2.4  Paint, Old Coatings, Markings  242

7.2.3 Surface Roughness  243

7.2.4 Shells, Scales, Overlaps  243

7.3  Dimensions and Weights of Material to be Galvanized  244

7.3.1 General Notes  244

7.3.2  Bath Dimensions, Piece Weights  244

7.3.3  Bulky Parts, Oversized Parts  245

7.3.4 Suspensions  246

7.4  Containers and Tubular Constructions (Hollow Bodies)  247

7.4.1 General Notes  247

7.4.2 Tubular Constructions  247

7.4.3  External Galvanizing of Tubes and Containers  248

7.4.4 Containers  249

7.5 Steel Profile Constructions  251

Contents  XI

7.5.1 Materials/Material Thickness/Stress  251

7.5.2 Surface Preparation  251

7.5.3 Overlaps  252

7.5.4  Free Punches and Flow Apertures  252

7.6  Steel Sheet and Steel Wire  255

7.6.1 Sheet Steelware  255

7.6.1.1 Joining Methods  255

7.6.1.2 Design  255

7.6.2 Wire Products  257

7.7  Constructions of Hot-dip Galvanized Semifinished Products  257

7.7.1 Requirements  258

7.7.2 Processing  259

7.8  Avoidance of Distortion and Crack Formation  260

7.8.1 Coherences  260

7.8.2 Remedies  262

7.8.3  Reduction of Distortion/Crack Risk in Large Steel Constructions  263

7.9  Welding Before and After Hot-dip Galvanizing  265

7.9.1  Welding Before Hot-dip Galvanizing  265

7.9.1.1 General Notes  265

7.9.1.2 Sources of Defects  265

7.9.1.3 Welding Practice  266

7.9.2  Welding After Hot-dip Galvanizing  268

7.9.2.1 General Notes  268

7.9.2.2 Welding Practice  268

7.10  Hot-dip Galvanizing of Small Parts  270

7.10.1 Methods  270

7.10.2  What are Small Parts?  271

7.10.3  Appearance and Surface Quality  271

7.10.4 Products  271

7.10.4.1 Fasteners  271

7.10.4.2  Nails, Pivots, Discs, Hooks, etc.  272

7.10.4.3  Small Parts of Sectional Steel, Bar Steel and Sheet  272

7.10.4.4 Chains  273

7.11  Reworking and Repair of Zinc Coatings  273

7.11.1  Zinc Ridges, Drainage Runs  273

7.11.2  Hinges and Thread Bolts  273

7.11.3 Imperfections and Damages  274

7.12  Hot-dip Galvanizing of Cast Materials  276

7.13  Local Avoidance of Zinc Adherence  277

7.14 Standards and Guidelines  278

7.14.1  DIN EN ISO 1461 and National Supplement 1 (Notes)  278

7.14.2  DIN EN ISO 14713  281

7.14.3 Further Standards  281

7.15  Defects and Avoiding Defects  282

7.15.1 Extraneous Rust  282

XII Contents

7.15.2 Grinding Sparks  284

7.15.3 Cracks in Workpieces  284

7.15.4  Dissimilar Layers on the Steel Structure  284

7.15.5 Thermal Impacts  286

7.15.6  Damages through Straightening Work  287

7.15.7  Galvanizing Defects through Air Inclusions  287

7.15.8 Unprotected Fasteners  287

References  288

8  Quality Management in Hot-dip Galvanizing Companies  291

G. Halm

8.1  Why Quality Management?  291

8.2 Important Criteria  292

8.3  Structure of the QM System according to DIN EN ISO 

9001:2000  292

8.4  Short Description of QM Elements Sections 4–8  294

8.4.1 Documentation Requirements Section 4  294

8.4.2  Management Responsibilities Section 5  295

8.4.3  Resource Management Section 6  295

8.4.4  Product Realization Section 7  295

8.4.5  Measuring, Analysis and Improvement Section 8  296

8.5  Introduction of QM Systems  300

8.6 Trends  300

Acknowledgment  301

References  301

9  Corrosion Behavior of Zinc Coatings  303

H.-J. Böttcher, W. Friehe, D. Horstmann, C.-L. Kruse, W. Schwenk, and 

W.-D. Schulz

9.1  Corrosion – Chemical  Properties  303

9.1.1 General Notes  303

9.1.2  Basic Principles of Corrosion in Waters  305

9.1.3 Thermodynamic Fundamentals  309

9.1.4 Bimetallic Corrosion  312

9.1.5 Thermal Resistance  313

9.1.6 Mechanical Resistance  314

9.2  Corrosion Caused by Atmosphere  314

9.2.1 General Notes  314

9.2.2  Corrosion Caused by Natural Weathering  315

9.2.2.1  Corrosion Caused by Natural Weathering without Rain 

Protection  316

9.2.2.2  Corrosion in Natural Weathering with Rain Protection  319

9.2.3 Indoor Corrosion  320

9.2.3.1  Interior Rooms without Air Conditioning  320

9.2.3.2  Interior Rooms with Air Conditioning  321

Contents  XIII

9.2.4 White-rust Formation  321

9.2.5  Corrosion Due to Drain Water  324

9.3 Corrosion through Water  324

9.3.1 Drinking Water  324

9.3.2 Swimming-pool Water  326

9.3.3 Open Cooling Systems  326

9.3.4  Closed Heating and Cooling Systems  327

9.3.5 Wastewater  327

9.3.5.1 Rainwater  327

9.3.5.2 Domestic Wastewater  327

9.3.5.3 Wastewater Treatment Plants  328

9.3.6 Seawater  328

9.3.6.1 Cover-layer Formation  329

9.3.6.2 Blistering  329

9.3.6.3 Duplex-Systems  330

9.4  Corrosion in Soils  330

9.4.1 Free-corrosion Behavior  331

9.4.2  Potential Dependence of the Corrosion Rate  332

9.4.3  Reaction to Element Formation and Stray Current Impact  333

9.4.4  Reaction to the Impact of Alternating Current  333

9.5  Corrosion Resistance to Concrete  334

9.6  Corrosion in Agricultural Facilities and Caused by Agricultural 

Products  336

9.6.1  Buildings and Barn Equipment  337

9.6.2 Storage and Transport  337

9.6.3 Foodstuffs  338

9.7  Corrosion through Nonaqueous Media  338

9.8  Corrosion Protection Measures at Defective Spots  340

9.8.1 General Notes  340

9.8.2 Repair Methods  340

9.8.2.1  Thermal Spraying with Zinc  341

9.8.2.2  Application of Coating Materials  341

9.8.2.3 Application of Solders  341

9.9  Examination of Corrosion Resistance and Quality Test  342

9.9.1 Appearance  342

9.9.2 Layer Thickness  342

9.9.3 Adhesiveness  343

References  343

10  Coatings on Zinc Layers – Duplex-Systems  349

A. Schneider

10.1  Fundamentals, Use, Main Fields of Application  349

10.2 Definitions of Terms  352

10.3  Protection Period of Duplex-Systems  353

10.4  Special Features of the Constructive Design of Components  353

XIV Contents

10.5  Quality Requirements for the Zinc Coating for Protective Paint 

Layers  355

10.6  Surface Preparation of the Zinc Coating for the Protective 

Paint  356

10.6.1  Contaminations on the Zinc Coating  356

10.6.2 Surface-preparation Methods  357

10.6.3  Description of Practically Applied Surface-preparation Methods  359

10.6.3.1 Sweep-blasting  359

10.6.3.2  High-pressure Water Jet or Steam Blasting  360

10.6.3.3  Grinding with Abrasive Fleece  361

10.6.3.4 Chemical Conversion  362

10.6.4 Classification of Surface Preparation and Protective Paint Coating in 

the Manufacturing Technology  363

10.6.4.1  Protective Paint Systems with Liquid Coating Materials  363

10.6.4.2  Protective Paint Systems with Powder Coating Materials  364

10.7  Coating Materials, Protective Paint Systems  364

References  369

11 Economic Efficiency of Hot-dip Galvanizing  371

Peter Maaß

References  377

12 Examples of Use  379

Peter Maaß

12.1 Building Construction  380

12.2 Civil Engineering  383

12.3 Traffic Engineering  385

12.4 Sport/Leisure  388

12.5 Plant Engineering  389

12.6 Mining  390

12.7 Energy Supply  391

12.8 Agriculture  393

12.9 Component Parts/Fasteners  394

12.10 Environmental Protection  396

12.11 Handicraft  397

12.12 Art  399

12.13 Continuous-sheet Galvanizing  400

12.14 Conclusion  401

13 Appendix  403

Peter Maaß

 Appendix A Defect Occurrence on Zinc Coatings and at Hot-dip  Galvanized Workpieces  403

13.1  Requirements for the Zinc Coating  403

13.1.1 Design  403

Contents  XV

13.1.2 Workpiece Properties  404

13.1.3 Coating Properties  404

13.1.4 Layer Thickness  404

13.1.5 Repairs  404

13.1.6 Adhesiveness  405

13.2  Assessment Criteria for Hot-dip Galvanized Coatings on Steel 

Structures  405

13.3  Major Defects in the Zinc Coating or at the Hot-dip Galvanized 

Workpiece 406

13.3.1  Defects Originating from the Design of the Workpiece  406

13.3.1.1 Accumulations (Zinc Build-up)  406

13.3.1.2 Blocked Boreholes  407

13.3.1.3 Metal Embrittlement  407

13.3.1.4 Flash  407

13.3.1.5 Closed Hollow Bodies  407

13.3.1.6 Burned Castings  408

13.3.1.7 Distortion  408

13.3.1.8 Efflorescence of Salts  408

13.3.1.9  Inclusions of Pickle and Flux Residues  408

13.3.2  Defects Originating from Surface Coverings on the Workpiece  409

13.3.2.1  Defects due to Paint, Oil Crayon, Tar, etc.  409

13.3.2.2  Defects due to Grease and Oil  409

13.3.2.3  Defects due to Welding Slag  409

13.3.2.4 Black Areas  409

13.3.3  Defects Arising due to the Process Engineering Applied in Hot-dip 

Galvanizing  409

13.3.3.1 Ash, Flux  409

13.3.3.2 Thick Zinc Coating  410

13.3.3.3 Thin Zinc Coating  410

13.3.3.4 Peeling  410

13.3.3.5 Sticking Points  410

13.3.3.6 Pimples  411

13.3.3.7 Rough Surface  411

13.3.3.8  Formation of Tears and Sags  411

13.3.3.9 Drainage Runs, Drops, Points  411

13.3.4  Defects Caused by Transport, Storage and Assembly  412

13.3.4.1 Extraneous Rust  412

13.3.4.2 White Rust  412

13.3.4.3 Flaking  413

13.3.4.4 Brown Staining  413

13.3.4.5 Blistering  413

13.3.5  Handling and Assembly of Hot-dip Galvanized 

Components  414

 Appendix B Information Centers in the Federal Republic of  Germany  416

XVI Contents

 Appendix C Hot-dip Galvanizing Companies in Germany as of  15/8/2005 Source: Institut für Feuerverzinken GmbH  419

 Appendix D Worldwide Galvanizing Associations 439

Index  443










EBOOK - Handbook of Hot‐Dip Galvanization (Dr. Peter Maaß) 2011.


LINK DOWNLOAD (TÀI LIỆU VIP MEMBER)


EBOOK - Handbook of Hot‐Dip Galvanization (Dr. Peter Maaß) 2011 (SCAN).


LINK DOWNLOAD (TÀI LIỆU VIP MEMBER)

M_tả
M_tả

Không có nhận xét nào: