Compressed Air Distribution Systems - Tính toán hệ thống phân phối khí nén



The below article deals  with  the link  between  the demand side and the supply side and deals with  how to get the treated compressed air  to the points of  use at the right rate of flow  and  at  the  right  pressure.  Pressure  losses  due  to  inadequate  piping  will  result  in increased energy costs and variations in the system pressure, with adverse effects on the production process. 

How to Select Pipe Sizes?

The Compressor room header  into which  the air  compressor  discharges should be sized so that the air  velocity within  the  header  does not  exceed 20  ft  /  sec,  thus  allowing for future expansion. Distribution header piping leaving the compressor  room should be sized to allow an  air  velocity not to exceed 30 ft / sec  to minimise pressure drop. The air  from each compressor should not enter  the header at 90 degrees to the header axis but at a 45 degree angle in the direction of flow and always through wide-radius elbows.

An  air  receiver  located  after  a  reciprocating  air  compressor  can  prevent  pressure pulsations from affecting rotary or  centrifugal  compressors and their  controls in  the same system.  To  minimise  pressure  drop,  distribution  header  piping  leaving  the  compressor room  should  be  sized  to  allow  an  air  velocity  not  to  exceed  30  ft/sec.  The  following equation, or the chart of pressure drop in piping in Fig 1, may be used to determine proper piping sizes:

Determining Proper Piping Sizes:

Where:

A! =! Cross - Sectional area of the pipe bore, in2

.

Q! =! Flow rate, ft3

/min free air.

Pa! =! Prevailing atmospheric absolute pressure, psia.

Pd! =! Compressor discharge gauge pressure (or line pressure), psig.

V! =! Design pipe velocity, ft/sec.

!! ! ! ! A =  144 x Q x Pa

!!!!V x 60 x (Pd + Pa)

Where:

A! =! Cross - Sectional area of the pipe bore, in2.

D! =! Pipe Bore diameter, in.

! ! ! A=! n x d

! ! ! ! 4! ! !

Example:  Size  a  distribution  pipe  for  1,000  cfm  free  air  with  a  compressor  discharge 

pressure of 100 psig for a plant in Coimbatore, at an elevation of 1350 Metres above mean 

sea level, where the ambient pressure is 12.2 psia. Use a Maximum velocity of 30 ft/sec.

! ! ! A=!   144 x 1000 x 12.2!! = 8.699 in2

! ! ! ! 30 x 60 x (100 + 12.2)

!!!D=!   8.699 x 4 = 3.33 in

!!!  n!!

The nearest pipe size is 3 inches, which would increase the velocity in  the pipes to 37 ft/sec. This may be acceptable if the length of the pipe is not extensive. A 4-Inch Pipe would reduce the velocity to approximately 21 ft/sec and substantially reduce pressure loss.








LINK DOWNLOAD



The below article deals  with  the link  between  the demand side and the supply side and deals with  how to get the treated compressed air  to the points of  use at the right rate of flow  and  at  the  right  pressure.  Pressure  losses  due  to  inadequate  piping  will  result  in increased energy costs and variations in the system pressure, with adverse effects on the production process. 

How to Select Pipe Sizes?

The Compressor room header  into which  the air  compressor  discharges should be sized so that the air  velocity within  the  header  does not  exceed 20  ft  /  sec,  thus  allowing for future expansion. Distribution header piping leaving the compressor  room should be sized to allow an  air  velocity not to exceed 30 ft / sec  to minimise pressure drop. The air  from each compressor should not enter  the header at 90 degrees to the header axis but at a 45 degree angle in the direction of flow and always through wide-radius elbows.

An  air  receiver  located  after  a  reciprocating  air  compressor  can  prevent  pressure pulsations from affecting rotary or  centrifugal  compressors and their  controls in  the same system.  To  minimise  pressure  drop,  distribution  header  piping  leaving  the  compressor room  should  be  sized  to  allow  an  air  velocity  not  to  exceed  30  ft/sec.  The  following equation, or the chart of pressure drop in piping in Fig 1, may be used to determine proper piping sizes:

Determining Proper Piping Sizes:

Where:

A! =! Cross - Sectional area of the pipe bore, in2

.

Q! =! Flow rate, ft3

/min free air.

Pa! =! Prevailing atmospheric absolute pressure, psia.

Pd! =! Compressor discharge gauge pressure (or line pressure), psig.

V! =! Design pipe velocity, ft/sec.

!! ! ! ! A =  144 x Q x Pa

!!!!V x 60 x (Pd + Pa)

Where:

A! =! Cross - Sectional area of the pipe bore, in2.

D! =! Pipe Bore diameter, in.

! ! ! A=! n x d

! ! ! ! 4! ! !

Example:  Size  a  distribution  pipe  for  1,000  cfm  free  air  with  a  compressor  discharge 

pressure of 100 psig for a plant in Coimbatore, at an elevation of 1350 Metres above mean 

sea level, where the ambient pressure is 12.2 psia. Use a Maximum velocity of 30 ft/sec.

! ! ! A=!   144 x 1000 x 12.2!! = 8.699 in2

! ! ! ! 30 x 60 x (100 + 12.2)

!!!D=!   8.699 x 4 = 3.33 in

!!!  n!!

The nearest pipe size is 3 inches, which would increase the velocity in  the pipes to 37 ft/sec. This may be acceptable if the length of the pipe is not extensive. A 4-Inch Pipe would reduce the velocity to approximately 21 ft/sec and substantially reduce pressure loss.








LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: