ISO 17088:2021 Plastics — Organic recycling — Specifications for compostable plastics



ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 14, Environmental aspects.
This third edition cancels and replaces the second edition (ISO 17088:2012), which has been technically revised.
The main changes compared to the previous edition are as follows:
— in Clause 3:
— the following terms have been added: organic recycling, anaerobic digestion, per- and poly-fluorinated compound, well-managed industrial composting process, industrial composting, organic constituents, home composting;
— the term catalyst has been deleted;
— 6.1.4 has been deleted;
— a new subclause, 6.2.2, on variation in permitted thickness has been added;
— in 6.3, requirements regarding biodegradability of constituents have been revised;
— in 6.3.1.1, the following references have been added as additional laboratory test methods for biodegradation testing: ISO 14851, ISO 14852, ISO 17556;
— a new subclause, 6.3.2, on potential for biogas production has been added;
6.4 has been extended covering ecotoxicity tests with representative species from three trophic levels;
— in 6.5, new requirements regarding control of constituents with respect to per- and poly-fluorinated compounds (PFCs) and hazardous substances (as specified in Annex B) have been included;
— the list of regulated metals in EU + EFTA countries has been revised;
— new annexes, Annex B, Annex C, Annex E and Annex F, have been added.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.




Introduction
Management of solid wastes is a problem of growing interest around the world. Cities, towns and countries are attempting to divert more materials from disposal (landfills and incineration without energy recovery) by performing different recovery options in order to transform waste into usable products. Plastics recovery technologies include material recovery (mechanical recycling, chemical or feedstock recycling, and biological or organic recycling) and the recovery of energy in the form of usable heat under controlled combustion conditions.
This document intends to correctly identify compostable plastics, and compostable products made from plastics, which can be recovered by organic recycling, i.e. will disintegrate and biodegrade satisfactorily together with biowaste producing compost as an outcome, in composting or in anaerobic digestion followed by composting, and will not leave any persistent or hazardous residues.





WARNING Sewage, activated sludge, soil and compost might contain potentially pathogenic organisms. Therefore, appropriate precautions should be taken when handling them. Toxic test, compounds and those whose properties are unknown should be handled with care.

1 Scope
This document specifies procedures and requirements for plastics, and products made from plastics, that are suitable for recovery through organic recycling. The four following aspects are addressed:
a) disintegration during composting;
b) ultimate aerobic biodegradation;
c) no adverse effects of compost on terrestrial organisms;
d) control of constituents.
These four aspects are suitable to assess the effects on the industrial composting process.
This document is intended to be used as the basis for systems of labelling and claims for compostable plastics materials and products.
This document does not provide information on requirements for the biodegradability of plastics which end up in the environment as litter. It is also not applicable to biological treatment undertaken in small installations by householders.


NOTE 1 The recovery of compostable plastics through composting can be carried out under the conditions found in well-managed industrial composting processes, where the temperature, water content, aerobic conditions, carbon/nitrogen ratio and processing conditions are optimized. Such conditions are generally obtained in industrial and municipal composting plants. Under these conditions, compostable plastics disintegrate and biodegrade at rates comparable to yard trimmings, kraft paper bags and food scraps.


NOTE 2 “Compostable” or “compostable in municipal and industrial composting facilities” are expressions considered to be equivalent to organically recyclable for the purposes of this document.




2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 472, Plastics — Vocabulary
ISO 11268-1, Soil quality — Effects of pollutants on earthworms — Part 1: Determination of acute toxicity to Eisenia fetida/Eisenia andrei
ISO 11268-2, Soil quality — Effects of pollutants on earthworms — Part 2: Determination of effects on reproduction of Eisenia fetida/Eisenia andrei
ISO 11269-2, Soil quality — Determination of the effects of pollutants on soil flora — Part 2: Effects of contaminated soil on the emergence and early growth of higher plants
ISO 14851, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer
ISO 14852, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by analysis of evolved carbon dioxide
ISO 14855-1, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 1: General method
ISO 14855-2, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test
ISO 15685, Soil quality — Determination of potential nitrification and inhibition of nitrification — Rapid test by ammonium oxidation
ISO 16929, Plastics — Determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test
ISO 17556, Plastics — Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved
EN 14582, Characterization of waste — Halogen and sulfur content — Oxygen combustion in closed systems and determination methods
OECD, (2006), Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264070066-en




3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 472 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1
compost
organic soil conditioner obtained by biodegradation of a mixture consisting principally of vegetable residues, occasionally with other organic material and having a limited mineral content
[SOURCE:ISO 472:2013, 2.1735]

3.2
compostable plastic
plastic that undergoes degradation by biological processes during composting to yield CO2, water, inorganic compounds and biomass at a rate consistent with other known compostable materials and leave no visible, distinguishable or toxic residue
Note 1 to entry: "Hazardous" is used synonymously to "toxic".

3.3
composting
aerobic process designed to produce compost starting from biodegradable waste
Note 1 to entry: Composting is classified into industrial composting, home composting and worm composting.

3.4
disintegration
physical breakdown of a material into very small fragments

3.5
filler
relatively inert solid material added to a plastic to modify its strength, permanence, working properties or other qualities, or to lower costs

3.6
organic recycling
aerobic (composting) or anaerobic (digestion) treatment of plastics waste under controlled conditions using micro-organisms to produce, in the presence of oxygen, stabilized organic residues (compost), carbon dioxide and water or, in the absence of oxygen, stabilized organic residues (compost), methane and carbon dioxide
Note 1 to entry: The term “biological recycling” is used synonymously.
[SOURCE:ISO 15270:2008, 3.5, modified — "biodegradable" has been omitted and "(compost)" has been added.]

3.7
total dry solids
amount of solids obtained by taking a known volume of test material or compost and drying at about 105 °C to constant mass

3.8
ultimate aerobic biodegradation
breakdown of an organic compound by microorganisms in the presence of oxygen into carbon dioxide, water and mineral salts of any other elements present (mineralization) plus new biomass

3.9
volatile solid
solids obtained by subtracting the residue of a known volume of test material or compost after incineration at about 550 °C from the total dry solids (3.7) of the same sample
Note 1 to entry: The volatile-solids content is an indication of the amount of organic matter present.

3.10
anaerobic digestion
process of controlled decomposition of biodegradable materials under managed conditions where free oxygen is absent, at temperatures suitable for naturally occurring mesophilic or thermophilic anaerobic and facultative bacteria species, that convert the inputs to a methane rich biogas and digestate
Note 1 to entry: In a second phase, the digestate is typically stabilised by means of a composting (aerobic) process.

3.11
per- and poly-fluorinated compound
PFC
organofluorine compound containing only carbon-fluorine bonds and carbon-carbon bonds but also other heteroatoms

3.12
well-managed industrial composting process
composting process performed under controlled conditions where the temperature, water content, aerobic conditions, carbon/ nitrogen ratio and other conditions are optimized

3.13
industrial composting
composting process performed under controlled conditions on industrial scale with the aim of producing compost for the market
Note 1 to entry: In some regions industrial composting is referred to as professional composting.

3.14
organic constituent
chemical constituent that contains carbon covalently linked to other carbon atoms and to other elements, most commonly hydrogen, oxygen or nitrogen
Note 1 to entry: Inorganic carbonates, carbides, cyanides and simple oxides such as carbon monoxide and carbon dioxide are not considered as organic constituent.
Note 2 to entry: Allotropes of carbon, such as diamond, graphite, carbon black, fullerenes, and carbon nanotubes are also not considered as organic constituent.

3.15
home composting
practice performed by a private individual with the aim of producing compost for his own use
...


ISO 17088:2021 Nhựa – Tái chế hữu cơ – Thông số kỹ thuật cho nhựa có thể phân hủy

Quản lý chất thải rắn là một vấn đề ngày càng được quan tâm trên toàn thế giới. Các quốc gia đang cố gắng chuyển hướng nhiều vật liệu hơn khỏi việc xử lý (bãi chôn lấp và đốt mà không thu hồi năng lượng) bằng cách thực hiện các tùy chọn thu hồi khác nhau để biến chất thải thành vật dụng có thể sử dụng được. Công nghệ thu hồi nhựa bao gồm thu hồi vật liệu (tái chế cơ học, tái chế hóa học hoặc tái chế nguyên liệu và tái chế sinh học hoặc hữu cơ) và thu hồi năng dưới dạng nhiệt có thể sử dụng trong điều kiện đốt chát được kiểm soát.

Tiêu chuẩn ISO 17088:2021 là gì?

Tiêu chuẩn ISO 17088:2021 là tiêu chuẩn quốc tế về Nhựa – Tái chế hữu cơ – Thông số kỹ thuật cho nhựa có thể phân hủy. Tiêu chuẩn ra đời nhằm mục đích xác định chính xác nhựa có thể phân hủy và các sản phẩm có thể phân hủy được làm từ nhựa, có thể được phục hồi bằng cách tái chế hữu cơ sẽ không để lại bất kỳ dư lượng dai dẳng hoặc nguy hiểm nào.

Phạm vi áp dụng của tiêu chuẩn ISO 17088:2021

ISO 17088:2021 quy định các quy trình và yêu cầu đối với nhựa và các sản phẩm làm từ nhựa phù hợp để thu hồi thông qua tái chế hữu cơ. Bốn khía cạnh sau đây sẽ được giải quyết:

Sự phân hủy trong quá trình ủ phân
Phân hủy sinh học hiếu khí cuối cùng
Không có tác dụng phụ của phân hữu cơ đối với các sinh vật trên cạn
Kiểm soát các thành phần
Bốn khía cạnh này phù hợp để đánh giá tác động đối với quá trình ủ phân cong nghiệp.

Tiêu chuẩn này nhằm mục đích sử dụng làm cơ sở cho các hệ thống ghi nhãn và công bố đối với các vật liệu và sản phẩm nhựa có thể phân hủy được.

Tiêu chuẩn này không cung cấp thông tin về các yêu cầu đối với khả năng phân hủy sinh học của nhựa mà cuối cùng sẽ thải ra môi trường dưới dạng rác thải. Tiêu chuẩn này cũng không áp dụng cho xử lý sinh học do các hộ gia đình thực hiện trong các cơ sở lắp đặt nhỏ.

Lưu ý 1: Việc thu hồi nhựa có thể phân hủy được thông qua quá trình ủ phân có thể được thực hiện trong các điều kiện được tìm thấy trong các quy trình ủ phân công nghiệp được quản lý tốt, trong đó nhiệt độ, hàm lượng nước, điều kiện hiếu khí, tỷ lệ cacbon/nitơ và điều kiện xử lý được tối ưu hóa. Những điều kiện như vậy thường thu được trong các nhà máy ủ phân công nghiệp và đô thị. Trong những điều kiện này, nhựa có thể phân hủy được sẽ phân hủy và phân hủy sinh học với tốc độ tương đương với túi giấy kraft và thức ăn thừa.

Lưu ý 2:  “Có thể ủ phân” hoặc “có thể ủ phân tại các cơ sở ủ phân công nghiệp và đô thị” là những cách diễn đạt được coi là tương đương với khả năng tái chế hữu cơ cho các mục đích của tiêu chuẩn này.






ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 14, Environmental aspects.
This third edition cancels and replaces the second edition (ISO 17088:2012), which has been technically revised.
The main changes compared to the previous edition are as follows:
— in Clause 3:
— the following terms have been added: organic recycling, anaerobic digestion, per- and poly-fluorinated compound, well-managed industrial composting process, industrial composting, organic constituents, home composting;
— the term catalyst has been deleted;
— 6.1.4 has been deleted;
— a new subclause, 6.2.2, on variation in permitted thickness has been added;
— in 6.3, requirements regarding biodegradability of constituents have been revised;
— in 6.3.1.1, the following references have been added as additional laboratory test methods for biodegradation testing: ISO 14851, ISO 14852, ISO 17556;
— a new subclause, 6.3.2, on potential for biogas production has been added;
6.4 has been extended covering ecotoxicity tests with representative species from three trophic levels;
— in 6.5, new requirements regarding control of constituents with respect to per- and poly-fluorinated compounds (PFCs) and hazardous substances (as specified in Annex B) have been included;
— the list of regulated metals in EU + EFTA countries has been revised;
— new annexes, Annex B, Annex C, Annex E and Annex F, have been added.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.




Introduction
Management of solid wastes is a problem of growing interest around the world. Cities, towns and countries are attempting to divert more materials from disposal (landfills and incineration without energy recovery) by performing different recovery options in order to transform waste into usable products. Plastics recovery technologies include material recovery (mechanical recycling, chemical or feedstock recycling, and biological or organic recycling) and the recovery of energy in the form of usable heat under controlled combustion conditions.
This document intends to correctly identify compostable plastics, and compostable products made from plastics, which can be recovered by organic recycling, i.e. will disintegrate and biodegrade satisfactorily together with biowaste producing compost as an outcome, in composting or in anaerobic digestion followed by composting, and will not leave any persistent or hazardous residues.





WARNING Sewage, activated sludge, soil and compost might contain potentially pathogenic organisms. Therefore, appropriate precautions should be taken when handling them. Toxic test, compounds and those whose properties are unknown should be handled with care.

1 Scope
This document specifies procedures and requirements for plastics, and products made from plastics, that are suitable for recovery through organic recycling. The four following aspects are addressed:
a) disintegration during composting;
b) ultimate aerobic biodegradation;
c) no adverse effects of compost on terrestrial organisms;
d) control of constituents.
These four aspects are suitable to assess the effects on the industrial composting process.
This document is intended to be used as the basis for systems of labelling and claims for compostable plastics materials and products.
This document does not provide information on requirements for the biodegradability of plastics which end up in the environment as litter. It is also not applicable to biological treatment undertaken in small installations by householders.


NOTE 1 The recovery of compostable plastics through composting can be carried out under the conditions found in well-managed industrial composting processes, where the temperature, water content, aerobic conditions, carbon/nitrogen ratio and processing conditions are optimized. Such conditions are generally obtained in industrial and municipal composting plants. Under these conditions, compostable plastics disintegrate and biodegrade at rates comparable to yard trimmings, kraft paper bags and food scraps.


NOTE 2 “Compostable” or “compostable in municipal and industrial composting facilities” are expressions considered to be equivalent to organically recyclable for the purposes of this document.




2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 472, Plastics — Vocabulary
ISO 11268-1, Soil quality — Effects of pollutants on earthworms — Part 1: Determination of acute toxicity to Eisenia fetida/Eisenia andrei
ISO 11268-2, Soil quality — Effects of pollutants on earthworms — Part 2: Determination of effects on reproduction of Eisenia fetida/Eisenia andrei
ISO 11269-2, Soil quality — Determination of the effects of pollutants on soil flora — Part 2: Effects of contaminated soil on the emergence and early growth of higher plants
ISO 14851, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer
ISO 14852, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by analysis of evolved carbon dioxide
ISO 14855-1, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 1: General method
ISO 14855-2, Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test
ISO 15685, Soil quality — Determination of potential nitrification and inhibition of nitrification — Rapid test by ammonium oxidation
ISO 16929, Plastics — Determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test
ISO 17556, Plastics — Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved
EN 14582, Characterization of waste — Halogen and sulfur content — Oxygen combustion in closed systems and determination methods
OECD, (2006), Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264070066-en




3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 472 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/
3.1
compost
organic soil conditioner obtained by biodegradation of a mixture consisting principally of vegetable residues, occasionally with other organic material and having a limited mineral content
[SOURCE:ISO 472:2013, 2.1735]

3.2
compostable plastic
plastic that undergoes degradation by biological processes during composting to yield CO2, water, inorganic compounds and biomass at a rate consistent with other known compostable materials and leave no visible, distinguishable or toxic residue
Note 1 to entry: "Hazardous" is used synonymously to "toxic".

3.3
composting
aerobic process designed to produce compost starting from biodegradable waste
Note 1 to entry: Composting is classified into industrial composting, home composting and worm composting.

3.4
disintegration
physical breakdown of a material into very small fragments

3.5
filler
relatively inert solid material added to a plastic to modify its strength, permanence, working properties or other qualities, or to lower costs

3.6
organic recycling
aerobic (composting) or anaerobic (digestion) treatment of plastics waste under controlled conditions using micro-organisms to produce, in the presence of oxygen, stabilized organic residues (compost), carbon dioxide and water or, in the absence of oxygen, stabilized organic residues (compost), methane and carbon dioxide
Note 1 to entry: The term “biological recycling” is used synonymously.
[SOURCE:ISO 15270:2008, 3.5, modified — "biodegradable" has been omitted and "(compost)" has been added.]

3.7
total dry solids
amount of solids obtained by taking a known volume of test material or compost and drying at about 105 °C to constant mass

3.8
ultimate aerobic biodegradation
breakdown of an organic compound by microorganisms in the presence of oxygen into carbon dioxide, water and mineral salts of any other elements present (mineralization) plus new biomass

3.9
volatile solid
solids obtained by subtracting the residue of a known volume of test material or compost after incineration at about 550 °C from the total dry solids (3.7) of the same sample
Note 1 to entry: The volatile-solids content is an indication of the amount of organic matter present.

3.10
anaerobic digestion
process of controlled decomposition of biodegradable materials under managed conditions where free oxygen is absent, at temperatures suitable for naturally occurring mesophilic or thermophilic anaerobic and facultative bacteria species, that convert the inputs to a methane rich biogas and digestate
Note 1 to entry: In a second phase, the digestate is typically stabilised by means of a composting (aerobic) process.

3.11
per- and poly-fluorinated compound
PFC
organofluorine compound containing only carbon-fluorine bonds and carbon-carbon bonds but also other heteroatoms

3.12
well-managed industrial composting process
composting process performed under controlled conditions where the temperature, water content, aerobic conditions, carbon/ nitrogen ratio and other conditions are optimized

3.13
industrial composting
composting process performed under controlled conditions on industrial scale with the aim of producing compost for the market
Note 1 to entry: In some regions industrial composting is referred to as professional composting.

3.14
organic constituent
chemical constituent that contains carbon covalently linked to other carbon atoms and to other elements, most commonly hydrogen, oxygen or nitrogen
Note 1 to entry: Inorganic carbonates, carbides, cyanides and simple oxides such as carbon monoxide and carbon dioxide are not considered as organic constituent.
Note 2 to entry: Allotropes of carbon, such as diamond, graphite, carbon black, fullerenes, and carbon nanotubes are also not considered as organic constituent.

3.15
home composting
practice performed by a private individual with the aim of producing compost for his own use
...


ISO 17088:2021 Nhựa – Tái chế hữu cơ – Thông số kỹ thuật cho nhựa có thể phân hủy

Quản lý chất thải rắn là một vấn đề ngày càng được quan tâm trên toàn thế giới. Các quốc gia đang cố gắng chuyển hướng nhiều vật liệu hơn khỏi việc xử lý (bãi chôn lấp và đốt mà không thu hồi năng lượng) bằng cách thực hiện các tùy chọn thu hồi khác nhau để biến chất thải thành vật dụng có thể sử dụng được. Công nghệ thu hồi nhựa bao gồm thu hồi vật liệu (tái chế cơ học, tái chế hóa học hoặc tái chế nguyên liệu và tái chế sinh học hoặc hữu cơ) và thu hồi năng dưới dạng nhiệt có thể sử dụng trong điều kiện đốt chát được kiểm soát.

Tiêu chuẩn ISO 17088:2021 là gì?

Tiêu chuẩn ISO 17088:2021 là tiêu chuẩn quốc tế về Nhựa – Tái chế hữu cơ – Thông số kỹ thuật cho nhựa có thể phân hủy. Tiêu chuẩn ra đời nhằm mục đích xác định chính xác nhựa có thể phân hủy và các sản phẩm có thể phân hủy được làm từ nhựa, có thể được phục hồi bằng cách tái chế hữu cơ sẽ không để lại bất kỳ dư lượng dai dẳng hoặc nguy hiểm nào.

Phạm vi áp dụng của tiêu chuẩn ISO 17088:2021

ISO 17088:2021 quy định các quy trình và yêu cầu đối với nhựa và các sản phẩm làm từ nhựa phù hợp để thu hồi thông qua tái chế hữu cơ. Bốn khía cạnh sau đây sẽ được giải quyết:

Sự phân hủy trong quá trình ủ phân
Phân hủy sinh học hiếu khí cuối cùng
Không có tác dụng phụ của phân hữu cơ đối với các sinh vật trên cạn
Kiểm soát các thành phần
Bốn khía cạnh này phù hợp để đánh giá tác động đối với quá trình ủ phân cong nghiệp.

Tiêu chuẩn này nhằm mục đích sử dụng làm cơ sở cho các hệ thống ghi nhãn và công bố đối với các vật liệu và sản phẩm nhựa có thể phân hủy được.

Tiêu chuẩn này không cung cấp thông tin về các yêu cầu đối với khả năng phân hủy sinh học của nhựa mà cuối cùng sẽ thải ra môi trường dưới dạng rác thải. Tiêu chuẩn này cũng không áp dụng cho xử lý sinh học do các hộ gia đình thực hiện trong các cơ sở lắp đặt nhỏ.

Lưu ý 1: Việc thu hồi nhựa có thể phân hủy được thông qua quá trình ủ phân có thể được thực hiện trong các điều kiện được tìm thấy trong các quy trình ủ phân công nghiệp được quản lý tốt, trong đó nhiệt độ, hàm lượng nước, điều kiện hiếu khí, tỷ lệ cacbon/nitơ và điều kiện xử lý được tối ưu hóa. Những điều kiện như vậy thường thu được trong các nhà máy ủ phân công nghiệp và đô thị. Trong những điều kiện này, nhựa có thể phân hủy được sẽ phân hủy và phân hủy sinh học với tốc độ tương đương với túi giấy kraft và thức ăn thừa.

Lưu ý 2:  “Có thể ủ phân” hoặc “có thể ủ phân tại các cơ sở ủ phân công nghiệp và đô thị” là những cách diễn đạt được coi là tương đương với khả năng tái chế hữu cơ cho các mục đích của tiêu chuẩn này.




M_tả
M_tả

Chuyên mục:

Không có nhận xét nào: