Xấp Xỉ Diophantine Và Phân Số Liên Tục Trong Giải Phương Trình Pell (Nguyễn Thị Tuyết Mai)
Trong lịch sử phát triển của Số học, phương trình Pell được biết đến là một phương trình nổi tiếng trong dạng toán về phương trình nghiệm nguyên. Phương trình Pell được phát minh cách đây 1000 năm ở Ấn Độ cổ đại bởi Brahmaguta. Trong nhiều năm sau đó, các nhà toán học bắt đầu nghiên cứu tìm lời giải cho phương trình này. Đến năm 1770, Lagrange đã phát triển lí thuyết tổng quát về phương trình dựa trên phân số liên tục. Bên cạnh đó, các nhà toán học lớn như Legendre(1798), É. Borel(1903) cũng quan tâm nghiên cứu và có nhiều đóng góp cho việc hoàn thiện và phát triển phương trình Pell.
Trong lịch sử phát triển của Số học, phương trình Pell được biết đến là một phương trình nổi tiếng trong dạng toán về phương trình nghiệm nguyên. Phương trình Pell được phát minh cách đây 1000 năm ở Ấn Độ cổ đại bởi Brahmaguta. Trong nhiều năm sau đó, các nhà toán học bắt đầu nghiên cứu tìm lời giải cho phương trình này. Đến năm 1770, Lagrange đã phát triển lí thuyết tổng quát về phương trình dựa trên phân số liên tục. Bên cạnh đó, các nhà toán học lớn như Legendre(1798), É. Borel(1903) cũng quan tâm nghiên cứu và có nhiều đóng góp cho việc hoàn thiện và phát triển phương trình Pell.

%20(1).png)

.png)
Không có nhận xét nào: