EBOOK - Modern Electric Vehicle Technology - Full Edition (C.C. Chan & K.T. Chau)





Công nghệ xe điện hiện đại (C.C. Chan & K.T. Chau)


We have now entered into the 21st Century. In a world where energy conservation, environmental protection and sustainable development are growing concerns, the development of electric vehicle (EV) technology has taken on an accelerated pace.
The dream of having commercially viable EVs is becoming a reality. This book is published after celebrating the  30th Anniversary of the Interna- tional Electric Vehicle Symposium (EVS) and the  10th Anniversary of the World Electric Vehicle Association (WEVA), as well as at dawn of commercialization of electric/hybrid vehicles. In these activities, the  first author has deeply involved.

We hope this book reflects the  recent  development of electric/hybrid vehicles, contributes to the  advancement of electric/hybrid vehicle technology and pro- motes the commercialization of electric/hybrid vehicles-clean,  efficient and intel- ligent transportation means for the 21 st Century.
Electric vehicle technology is the happy marriage of mechanical/chemical and electrical/electronic laws  which operate in  perfect harmony. This book covers multidisciplinary aspects of  EVs, and is written for  a wide coverage of readers including students,  researchers, engineers and administrators. It is organized in such a way that it provides maximum flexibility without any loss of continuity
from one chapter to another. We believe that this approach would facilitate the readers to select reading  those chapters that are most interesting to them. The suggestion for reading is as follows:
0 Electrical engineering students taking a 35- to 45-h course dedicated to Electric Vehicle Technology may be interested in all chapters.

- Researchers in the field of EVs, EV technology or automotive engineering may be more interested in Chapters 1, 3, 4, 5, 6, 7, 8 and 9.
- Researchers  in  the field of chemical engineering may be more interested in Chapters 6 and 7.
- Researchers  in  the field of computer  engineering may be more interested  in Chapter 8.
- Researchers  in  the field  of power  engineering  may be more  interested in Chapter 9.
- Researchers in the field of environmental sciences may be more  interested in Chapter 10.
- Practising  engineers for EVs and automobiles  may be more  interested in Chapters 1, 3, 4, 5, 6, 7 and 9.
- Administrators relating to EVs, hybrid EVs (HEVs), energy conservation, environmental protection and sustainable businesses may be more interested in Chapters 1, 2, 3, 4, 9 and 10.
- General readers may be interested in any chapters.

Chapters 1 and 2 are written to review the important of engineering philosophy and fundamental concepts of EV technology, then to summarize the development of EVs. Chapter 1 gives an overview on the past, present and future of EVs, and reveals the essential engineering philosophy of EVs, which is the guiding ideology of the whole book. Then, Chapter 2 briefly describes the development of both EVs and HEVs, and hence identifies the state-of-the-art EVs and HEVs.
Chapters 3 and 4 present the system configurations of modern EVs and HEVs. New concepts and classifications of both EVs and HEVs are revealed. Chapter 3 includes the variations in EV configurations due to fixed and variable  gearing, single- and multiple-motor drives and in-wheel drives. Some unique EV para- meters are also discussed. Chapter 4 includes the variations in HEV configurations and the corresponding power flow control.
Chapters 5, 6 and 7 are core chapters of this book. These three chapters are essentially in technical nature. Chapter 5 is devoted to present electric propulsion systems for modern EVs. It involves in-depth  discussions of dc motor drives, induction motor drives, permanent-magnet motor drives and switched reluctance motor drives for electric propulsion. Chapter 6 presents different types of energy
sources for EVs, including batteries, fuel cells, ultracapacitors and ultrahigh-speed flywheels. Their  operating  principles, unique  features and potentialities are dis- cussed and evaluated. Also, a new concept on the hybridization of multiple energy sources is revealed to solve the  problems due to the use of sole energy source. Chapter 7 discusses various  auxiliaries for modern EVs, including battery char- gers, battery indicators, energy management systems, temperature control units, power  steering units,  auxiliary power  supplies, navigation systems and regener- ative braking systems.
Chapter 8 delineates the concept of system level simulation for EVs, hence the development of a dedicated EV simulator. Based on the EV simulator, the deduc- tions of optimal transmission ratio, optimal system voltage and optimal hybrid- ization ratio are exemplified. Furthermore, a case study on the implementation of electric light buses is given.
Chapters 9 and 10 deal with the commercialization and implementation of EVs. Chapter 9 discusses the most essential factor, EV infrastructure, for the commer- cialization and popularisation of EVs. It includes the  discussions on domestic charging infrastructure, public charging infrastructure, standardization and regulations, training and promotion as well as various impacts on the power system.
Chapter 10 presents the energy, environment and economy (EEE) benefits result- ing from the implementation of EVs.



CONTENTS:



1  Engineering philosophy of EV development 
1.1  Past, present and future of EVs 
1.1.1  Past 30 years development 
1.1.2  Present major issues 
1.1.3  Development trends 
1.2  Engineering philosophy of EVs 
1.2.1  EV concept 
1.2.2  EV engineering philosophy 
1.2.3  Key EV technologies 
References 
2  EV and HEV developments 
2.1  Historical development 
2.2  Recent development 
2.3  State-of-the-art EVs and HEVs 
References 
3  EV systems 
3.1  EV configurations 
3.1.1  Fixed and variable gearing 
3.1.2  Single- and multiple-motor drives 
3.1.3  In-wheel drives 
3.2.1  Weight and size parameters 
3.2.2  Force parameters 
3.2.3  Energy parameters 
3.2.4  Performance parameters 
References 
3.2  EV parameters 
4  HEV systems 
4.1  HEV configurations 
4.1.1  Series hybrid system 
4.1.2  Parallel hybrid system 
4.1.3  Series-parallel hybrid system 
4.1.4  Complex hybrid system 
viii  Con tents 
4.2  Power flow control 
4.2.1  Series hybrid control 
4.2.2  Parallel hybrid control 
4.2.3  Series-parallel hybrid control 
4.2.4  Complex hybrid control 
Example of HEV system performances 
References 
5  Electric propulsion 
5.1  EV considerations 
5.1.1  Electric motors 
5.1.2  Power electronics 
5.1.3  Microelectronics 
5.1.4  Control strategies 
5.2.1  System configurations 
5.2.2  Dc motors 
5.2.3  Dc-dc  converters 
5.2.4  Speed control 
5.3.1  System configurations 
5.3.2  Induction motors 
5.3.3  Inverters 
5.3.4  Speed control 
5.4  Permanent-magnet motor drives 
5.4.1  PM materials 
5.4.2  PM dc motor drives 
5.4.3  PM brushless motor drives 
5.5  Switched reluctance motor drives 
5.5.1  Principle of operation 
5.5.2  Design of SR motors 
5.5.3 
References 
5.2  Dc motor drives 
5.3  Induction motor drives 
Control of SR motor drives 
6  Energy sources 
6.1  Batteries 
6.1.1  Lead-acid battery 
6.1.2  Nickel-based batteries 
6.1.3  Metal/air batteries 
6.1.4  Sodium-@ batteries 
6.1.5  Ambient-temperature lithium batteries 
6.1.6  Evaluation of batteries 
6.2.1  Acid fuel cells 
6.2.2  Alkaline fuel cells 
6.2  Fuel cells 
Con tents  ix 
6.2.3  Molten carbonate fuel cells 
6.2.4  Solid oxide fuel cells 
6.2.5  Solid polymer fuel cells 
6.2.6  Direct methanol fuel cells 
6.2.7  Evaluation of fuel cells 
6.3.1  Features of ultracapacitors 
6.3.2  Design of ultracapacitors 
6.3.3  Evaluation of ultracapacitors 
6.4.1  Features of ultrahigh-speed flywheels 
6.4.2  Design of ultrahigh-speed flywheels 
6.4.3  Evaluation of ultrahigh-speed flywheels 
6.5  Hybridization of energy sources 
6.5.1  Near-term hybrids 
6.5.2  Long-term hybrids 
References 
6.3  Ultracapacitors 
6.4  Ultrahigh-speed flywheels 
7  EV auxiliaries 
7.1  Battery characteristics and chargers 
7.1.1  Battery discharging characteristics 
7.1.2  Battery charging characteristics 
7.1.3  Battery chargers 
7.2.1  Battery indicating methods and devices 
7.2.2  Battery management methods and devices 
7.3.1  Air conditioners 
7.3.2  Thermoelectric variable temperature seats 
7.4.1  Electrohydraulic power steering 
7.4.2  Electric power steering 
7.5  Auxiliary power supplies 
7.5.1  Auxiliary battery 
7.5.2  Dc-dc  converters 
7.6.1  Local navigation 
7.6.2  Global navigation 
7.7  Regenerative braking systems 
7.7.1  System configuration 
7.7.2  Braking control 
References 
7.2  Battery indication and management 
7.3  Temperature control units 
7.4  Power steering units 
7.6  Navigation systems 
8  EV simulation 
8.1  System level simulation 
X  Contents 
8.2  EV simulator 
8.2.1  Simulator features 
8.2.2  Simulator modules 
8.2.3  Performance evaluation 
8.3.1  Transmission ratio 
8.3.2  System voltage 
8.3.3  Hybridization ratio 
8.4  Case study 
References 
8.3  System optimization 
9  EV infrastructure 
Domestic charging infrastructure 
Public charging infrastructure 
9.2.1  Normal charging stations 
9.2.2  Occasional charging stations 
9.2.3  Fast charging stations 
9.2.4  Battery swapping stations 
9.2.5  Move-and-charge zones 
9.2.6  Payment systems 
Standardization and regulations 
9.3.1  Standards 
9.3.2  Regulations 
Training and promotion 
9.4.1  Training 
9.4.2  Promotion 
Impacts on power system 
9.5.1  Harmonic impact 
9.5.2  Harmonic compensation 
9.5.3  Current demand impact 
9.5.4  Current demand minimization 
References 
10  Energy, environment and economy 
10.1  Energy 
10.1.1  Energy diversification 
10.1.2  Energy efficiency 
10.2.1  Transportation pollution 
10.2.2  Environment-sound EVs 
References 
10.2  Environment 
10.3  Economy 











Công nghệ xe điện hiện đại (C.C. Chan & K.T. Chau)


We have now entered into the 21st Century. In a world where energy conservation, environmental protection and sustainable development are growing concerns, the development of electric vehicle (EV) technology has taken on an accelerated pace.
The dream of having commercially viable EVs is becoming a reality. This book is published after celebrating the  30th Anniversary of the Interna- tional Electric Vehicle Symposium (EVS) and the  10th Anniversary of the World Electric Vehicle Association (WEVA), as well as at dawn of commercialization of electric/hybrid vehicles. In these activities, the  first author has deeply involved.

We hope this book reflects the  recent  development of electric/hybrid vehicles, contributes to the  advancement of electric/hybrid vehicle technology and pro- motes the commercialization of electric/hybrid vehicles-clean,  efficient and intel- ligent transportation means for the 21 st Century.
Electric vehicle technology is the happy marriage of mechanical/chemical and electrical/electronic laws  which operate in  perfect harmony. This book covers multidisciplinary aspects of  EVs, and is written for  a wide coverage of readers including students,  researchers, engineers and administrators. It is organized in such a way that it provides maximum flexibility without any loss of continuity
from one chapter to another. We believe that this approach would facilitate the readers to select reading  those chapters that are most interesting to them. The suggestion for reading is as follows:
0 Electrical engineering students taking a 35- to 45-h course dedicated to Electric Vehicle Technology may be interested in all chapters.

- Researchers in the field of EVs, EV technology or automotive engineering may be more interested in Chapters 1, 3, 4, 5, 6, 7, 8 and 9.
- Researchers  in  the field of chemical engineering may be more interested in Chapters 6 and 7.
- Researchers  in  the field of computer  engineering may be more interested  in Chapter 8.
- Researchers  in  the field  of power  engineering  may be more  interested in Chapter 9.
- Researchers in the field of environmental sciences may be more  interested in Chapter 10.
- Practising  engineers for EVs and automobiles  may be more  interested in Chapters 1, 3, 4, 5, 6, 7 and 9.
- Administrators relating to EVs, hybrid EVs (HEVs), energy conservation, environmental protection and sustainable businesses may be more interested in Chapters 1, 2, 3, 4, 9 and 10.
- General readers may be interested in any chapters.

Chapters 1 and 2 are written to review the important of engineering philosophy and fundamental concepts of EV technology, then to summarize the development of EVs. Chapter 1 gives an overview on the past, present and future of EVs, and reveals the essential engineering philosophy of EVs, which is the guiding ideology of the whole book. Then, Chapter 2 briefly describes the development of both EVs and HEVs, and hence identifies the state-of-the-art EVs and HEVs.
Chapters 3 and 4 present the system configurations of modern EVs and HEVs. New concepts and classifications of both EVs and HEVs are revealed. Chapter 3 includes the variations in EV configurations due to fixed and variable  gearing, single- and multiple-motor drives and in-wheel drives. Some unique EV para- meters are also discussed. Chapter 4 includes the variations in HEV configurations and the corresponding power flow control.
Chapters 5, 6 and 7 are core chapters of this book. These three chapters are essentially in technical nature. Chapter 5 is devoted to present electric propulsion systems for modern EVs. It involves in-depth  discussions of dc motor drives, induction motor drives, permanent-magnet motor drives and switched reluctance motor drives for electric propulsion. Chapter 6 presents different types of energy
sources for EVs, including batteries, fuel cells, ultracapacitors and ultrahigh-speed flywheels. Their  operating  principles, unique  features and potentialities are dis- cussed and evaluated. Also, a new concept on the hybridization of multiple energy sources is revealed to solve the  problems due to the use of sole energy source. Chapter 7 discusses various  auxiliaries for modern EVs, including battery char- gers, battery indicators, energy management systems, temperature control units, power  steering units,  auxiliary power  supplies, navigation systems and regener- ative braking systems.
Chapter 8 delineates the concept of system level simulation for EVs, hence the development of a dedicated EV simulator. Based on the EV simulator, the deduc- tions of optimal transmission ratio, optimal system voltage and optimal hybrid- ization ratio are exemplified. Furthermore, a case study on the implementation of electric light buses is given.
Chapters 9 and 10 deal with the commercialization and implementation of EVs. Chapter 9 discusses the most essential factor, EV infrastructure, for the commer- cialization and popularisation of EVs. It includes the  discussions on domestic charging infrastructure, public charging infrastructure, standardization and regulations, training and promotion as well as various impacts on the power system.
Chapter 10 presents the energy, environment and economy (EEE) benefits result- ing from the implementation of EVs.



CONTENTS:



1  Engineering philosophy of EV development 
1.1  Past, present and future of EVs 
1.1.1  Past 30 years development 
1.1.2  Present major issues 
1.1.3  Development trends 
1.2  Engineering philosophy of EVs 
1.2.1  EV concept 
1.2.2  EV engineering philosophy 
1.2.3  Key EV technologies 
References 
2  EV and HEV developments 
2.1  Historical development 
2.2  Recent development 
2.3  State-of-the-art EVs and HEVs 
References 
3  EV systems 
3.1  EV configurations 
3.1.1  Fixed and variable gearing 
3.1.2  Single- and multiple-motor drives 
3.1.3  In-wheel drives 
3.2.1  Weight and size parameters 
3.2.2  Force parameters 
3.2.3  Energy parameters 
3.2.4  Performance parameters 
References 
3.2  EV parameters 
4  HEV systems 
4.1  HEV configurations 
4.1.1  Series hybrid system 
4.1.2  Parallel hybrid system 
4.1.3  Series-parallel hybrid system 
4.1.4  Complex hybrid system 
viii  Con tents 
4.2  Power flow control 
4.2.1  Series hybrid control 
4.2.2  Parallel hybrid control 
4.2.3  Series-parallel hybrid control 
4.2.4  Complex hybrid control 
Example of HEV system performances 
References 
5  Electric propulsion 
5.1  EV considerations 
5.1.1  Electric motors 
5.1.2  Power electronics 
5.1.3  Microelectronics 
5.1.4  Control strategies 
5.2.1  System configurations 
5.2.2  Dc motors 
5.2.3  Dc-dc  converters 
5.2.4  Speed control 
5.3.1  System configurations 
5.3.2  Induction motors 
5.3.3  Inverters 
5.3.4  Speed control 
5.4  Permanent-magnet motor drives 
5.4.1  PM materials 
5.4.2  PM dc motor drives 
5.4.3  PM brushless motor drives 
5.5  Switched reluctance motor drives 
5.5.1  Principle of operation 
5.5.2  Design of SR motors 
5.5.3 
References 
5.2  Dc motor drives 
5.3  Induction motor drives 
Control of SR motor drives 
6  Energy sources 
6.1  Batteries 
6.1.1  Lead-acid battery 
6.1.2  Nickel-based batteries 
6.1.3  Metal/air batteries 
6.1.4  Sodium-@ batteries 
6.1.5  Ambient-temperature lithium batteries 
6.1.6  Evaluation of batteries 
6.2.1  Acid fuel cells 
6.2.2  Alkaline fuel cells 
6.2  Fuel cells 
Con tents  ix 
6.2.3  Molten carbonate fuel cells 
6.2.4  Solid oxide fuel cells 
6.2.5  Solid polymer fuel cells 
6.2.6  Direct methanol fuel cells 
6.2.7  Evaluation of fuel cells 
6.3.1  Features of ultracapacitors 
6.3.2  Design of ultracapacitors 
6.3.3  Evaluation of ultracapacitors 
6.4.1  Features of ultrahigh-speed flywheels 
6.4.2  Design of ultrahigh-speed flywheels 
6.4.3  Evaluation of ultrahigh-speed flywheels 
6.5  Hybridization of energy sources 
6.5.1  Near-term hybrids 
6.5.2  Long-term hybrids 
References 
6.3  Ultracapacitors 
6.4  Ultrahigh-speed flywheels 
7  EV auxiliaries 
7.1  Battery characteristics and chargers 
7.1.1  Battery discharging characteristics 
7.1.2  Battery charging characteristics 
7.1.3  Battery chargers 
7.2.1  Battery indicating methods and devices 
7.2.2  Battery management methods and devices 
7.3.1  Air conditioners 
7.3.2  Thermoelectric variable temperature seats 
7.4.1  Electrohydraulic power steering 
7.4.2  Electric power steering 
7.5  Auxiliary power supplies 
7.5.1  Auxiliary battery 
7.5.2  Dc-dc  converters 
7.6.1  Local navigation 
7.6.2  Global navigation 
7.7  Regenerative braking systems 
7.7.1  System configuration 
7.7.2  Braking control 
References 
7.2  Battery indication and management 
7.3  Temperature control units 
7.4  Power steering units 
7.6  Navigation systems 
8  EV simulation 
8.1  System level simulation 
X  Contents 
8.2  EV simulator 
8.2.1  Simulator features 
8.2.2  Simulator modules 
8.2.3  Performance evaluation 
8.3.1  Transmission ratio 
8.3.2  System voltage 
8.3.3  Hybridization ratio 
8.4  Case study 
References 
8.3  System optimization 
9  EV infrastructure 
Domestic charging infrastructure 
Public charging infrastructure 
9.2.1  Normal charging stations 
9.2.2  Occasional charging stations 
9.2.3  Fast charging stations 
9.2.4  Battery swapping stations 
9.2.5  Move-and-charge zones 
9.2.6  Payment systems 
Standardization and regulations 
9.3.1  Standards 
9.3.2  Regulations 
Training and promotion 
9.4.1  Training 
9.4.2  Promotion 
Impacts on power system 
9.5.1  Harmonic impact 
9.5.2  Harmonic compensation 
9.5.3  Current demand impact 
9.5.4  Current demand minimization 
References 
10  Energy, environment and economy 
10.1  Energy 
10.1.1  Energy diversification 
10.1.2  Energy efficiency 
10.2.1  Transportation pollution 
10.2.2  Environment-sound EVs 
References 
10.2  Environment 
10.3  Economy 








M_tả /a> M_tả

Không có nhận xét nào: