Monitor and Control of Greenhouse Environment


Theo dõi và kiểm soát môi trường hệ thống nhà kính (green house system).

Appropriate environmental conditions are necessary for optimum plant growth, improved crop yields, and efficient use of water and other resources. Automating the data acquisition process of the soil conditions and various climatic parameters that govern plant growth all ows information to be collected at high frequency withless labor requirements. The existing systems employ PC or SMS-based systems for keeping the user continuously informed of the conditions inside the greenhouse; but are unaffordable, bulky, difficult to maintain and less accepted by the technologically unskilled workers.


Contents:

1. INTRODUCTION 
1.1 CURRENT SCENARIO 
1.1.1  MANUAL  SET-UP: 
1.1.2 PARTIALLY  AUTOMATED  SET-UP: 
1.1.3 FULLY-  AUTOMATED:
1.2 PROPOSED MODEL FOR AUTOMATION OF GREENHOUSE 
2. SYSTEM MODEL .
2.1 BASIC MODEL OF THE SYSTEM  .
2.2 PARTS OF THE SYSTEM:
2.2.1 TRANSDUCERS (Data acquisition system) :
2.2.2 ANALOG TO DIGITAL  CONVERTER  (ADC):
2.2.3 MICROCONTROLLER:
2.2.4  ACTUATORS: 
2.2.5 DISPLAY UNIT: .
2.3 STEPS FOLLOWED IN DESIGNING THE SYSTEM:
3. HARDWARE DESCRIPTION
3.1 TRANSDUCERS:
3.1.1 SOIL MOISTURE  SENSOR..
3.1.2 LIGHT  SENSOR 
3.1.3  HUMIDITY  SENSOR
3.1.4  TEMPERATURE  SENSOR 
3.2 ANALOG TO DIGITAL CONVERTER (ADC 0808)
3.2.1 DESCRIPTION 
3.2.2 FEATURES 
3.2.3 CONVERSION METHOD USED
3.2.4 PIN DIAGRAM OF ADC 0808/0809
3.2.5  SELECTING  AN ANALOG  CHANNEL
3.3 CLOCK  CIRCUITRY  FOR ADC:
3.3.1 Functional  Description:
3.4 MICROCONTROLLER  (AT89S52)
3.4.1 CRITERIA FOR CHOOSING A MICROCONTROLLER
3.4.2 DESCRIPTION:
3.4.3 FEATURES: 
3.4.4 PIN CONFIGURATION .
3.4.5 BLOCK  DIAGRAM 
3.4.6 PIN DESCRIPTION 
3.4.7 SPECIAL  FUNCTION  REGISTERS.
3.4.8 MEMORY ORGANIZATION 
3.4.9 WATCHDOG TIMER (One-time  Enabled  with Reset-out) 
3.4.10 TIMERS  AND COUNTERS 
3.4.11  INTERRUPTS  .
3.5 LIQUID  CRYSTAL  DISPLAY
3.5.1  SIGNALS  TO THE LCD
3.5.2 PIN DESCRIPTION 
3.6 ALARM CIRCUITRY
3.7 RELAYS 
3.8  POWER SUPPLY CONNECTION
CIRCUIT  SCHEMATIC  OF THE SYSTEM
4. SYSTEMS USED IN WORK MODE
4.1 DRIP IRRIGATION SYSTEM FOR CONTROLLING SOIL MOISTURE 
4.2 ARTIFICIAL  GROWING  LIGHTS  FOR CONTROLLING  ILLUMINATION 
4.3 TEMPERATURE  CONTROLLERS
4.3.1 COOLING  EQUIPMENT
4.3.2 HEATING  EQUIPMENT 
4.4 HUMIDIFCATION  SYSTEMS
5. SOFTWARE
5.1 INTRODUCTION TO KEIL SOFTWARE 
5.1.1 WHAT  IS µVision3? 
5.1.2 STEPS FOLLOWED  IN CREATING  AN APPLICATION  IN uVision3: 
5.1.3 DEVICE  DATABASE
5.1.4 PERIPHERAL  SIMULATION.
5.2 PROGRAMMER.
5.3 ProLoad  PROGRAMMING  SOFTWARE
6. Flowcharts .
6.1 FLOWCHART REPRESENTING THE WORKING OF THE SYSTEM 
6.2 FLOWCHART FOR LCD INITIALIZATION 
7. RESULT ANALYSIS
7.1 TRANSDUCER READINGS .
7.1.1 SOIL MOISTURE  SENSOR.
7.1.2 LIGHT SENSOR.
7.1.3 HUMIDITY SENSOR
7.1.4 TEMPERATURE SENSOR
8. ADVANTAGES AND DISADVANTAGES
8.1 ADVANTAGES
8.2 DISADVANTAGES

LINK DOWNLOAD


Theo dõi và kiểm soát môi trường hệ thống nhà kính (green house system).

Appropriate environmental conditions are necessary for optimum plant growth, improved crop yields, and efficient use of water and other resources. Automating the data acquisition process of the soil conditions and various climatic parameters that govern plant growth all ows information to be collected at high frequency withless labor requirements. The existing systems employ PC or SMS-based systems for keeping the user continuously informed of the conditions inside the greenhouse; but are unaffordable, bulky, difficult to maintain and less accepted by the technologically unskilled workers.


Contents:

1. INTRODUCTION 
1.1 CURRENT SCENARIO 
1.1.1  MANUAL  SET-UP: 
1.1.2 PARTIALLY  AUTOMATED  SET-UP: 
1.1.3 FULLY-  AUTOMATED:
1.2 PROPOSED MODEL FOR AUTOMATION OF GREENHOUSE 
2. SYSTEM MODEL .
2.1 BASIC MODEL OF THE SYSTEM  .
2.2 PARTS OF THE SYSTEM:
2.2.1 TRANSDUCERS (Data acquisition system) :
2.2.2 ANALOG TO DIGITAL  CONVERTER  (ADC):
2.2.3 MICROCONTROLLER:
2.2.4  ACTUATORS: 
2.2.5 DISPLAY UNIT: .
2.3 STEPS FOLLOWED IN DESIGNING THE SYSTEM:
3. HARDWARE DESCRIPTION
3.1 TRANSDUCERS:
3.1.1 SOIL MOISTURE  SENSOR..
3.1.2 LIGHT  SENSOR 
3.1.3  HUMIDITY  SENSOR
3.1.4  TEMPERATURE  SENSOR 
3.2 ANALOG TO DIGITAL CONVERTER (ADC 0808)
3.2.1 DESCRIPTION 
3.2.2 FEATURES 
3.2.3 CONVERSION METHOD USED
3.2.4 PIN DIAGRAM OF ADC 0808/0809
3.2.5  SELECTING  AN ANALOG  CHANNEL
3.3 CLOCK  CIRCUITRY  FOR ADC:
3.3.1 Functional  Description:
3.4 MICROCONTROLLER  (AT89S52)
3.4.1 CRITERIA FOR CHOOSING A MICROCONTROLLER
3.4.2 DESCRIPTION:
3.4.3 FEATURES: 
3.4.4 PIN CONFIGURATION .
3.4.5 BLOCK  DIAGRAM 
3.4.6 PIN DESCRIPTION 
3.4.7 SPECIAL  FUNCTION  REGISTERS.
3.4.8 MEMORY ORGANIZATION 
3.4.9 WATCHDOG TIMER (One-time  Enabled  with Reset-out) 
3.4.10 TIMERS  AND COUNTERS 
3.4.11  INTERRUPTS  .
3.5 LIQUID  CRYSTAL  DISPLAY
3.5.1  SIGNALS  TO THE LCD
3.5.2 PIN DESCRIPTION 
3.6 ALARM CIRCUITRY
3.7 RELAYS 
3.8  POWER SUPPLY CONNECTION
CIRCUIT  SCHEMATIC  OF THE SYSTEM
4. SYSTEMS USED IN WORK MODE
4.1 DRIP IRRIGATION SYSTEM FOR CONTROLLING SOIL MOISTURE 
4.2 ARTIFICIAL  GROWING  LIGHTS  FOR CONTROLLING  ILLUMINATION 
4.3 TEMPERATURE  CONTROLLERS
4.3.1 COOLING  EQUIPMENT
4.3.2 HEATING  EQUIPMENT 
4.4 HUMIDIFCATION  SYSTEMS
5. SOFTWARE
5.1 INTRODUCTION TO KEIL SOFTWARE 
5.1.1 WHAT  IS µVision3? 
5.1.2 STEPS FOLLOWED  IN CREATING  AN APPLICATION  IN uVision3: 
5.1.3 DEVICE  DATABASE
5.1.4 PERIPHERAL  SIMULATION.
5.2 PROGRAMMER.
5.3 ProLoad  PROGRAMMING  SOFTWARE
6. Flowcharts .
6.1 FLOWCHART REPRESENTING THE WORKING OF THE SYSTEM 
6.2 FLOWCHART FOR LCD INITIALIZATION 
7. RESULT ANALYSIS
7.1 TRANSDUCER READINGS .
7.1.1 SOIL MOISTURE  SENSOR.
7.1.2 LIGHT SENSOR.
7.1.3 HUMIDITY SENSOR
7.1.4 TEMPERATURE SENSOR
8. ADVANTAGES AND DISADVANTAGES
8.1 ADVANTAGES
8.2 DISADVANTAGES

LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: