EBOOK - THE ART OF ELECTRONICS - Third Edition (Paul Horowitz & Winfield Hill)


EBOOK - NGHỆ THUẬT ĐIỆN TỬ - Phiên bản thứ ba (Paul Horowitz & Winfield Hill) - 1225 Trang.

In this new edition we have responded, also, to the reality that previous editions have been enthusiastically embraced by the community of practicing circuit designers, even thoughThe Art of Electronics(now 35 years in print) originated as a course textbook. So we’ve continued the “howwedo it” approach to circuit design; and we’ve expanded the depth of treatment, while (we hope) retaining the easy access and explanation of basics. At the same time we have split off some of the specifically course-related teaching and lab material into a separate Learning the Art of Electronicsvolume, a substantial expansion of the previous edition’s companionStudent Manual for The Art of Electronics.


CONTENTS:

ONE: Foundations 1
1.1 Introduction 1
1.2 Voltage, current, and resistance 1
1.2.1 Voltage and current 1
1.2.2 Relationship between voltage
and current: resistors 3
1.2.3 Voltage dividers 7
1.2.4 Voltage sources and current
sources 8
1.2.5 Th´ evenin equivalent circuit 9
1.2.6 Small-signal resistance 12
1.2.7 An example: “It’s too hot!” 13
1.3 Signals 13
1.3.1 Sinusoidal signals 14
1.3.2 Signal amplitudes and decibels 14
1.3.3 Other signals 15
1.3.4 Logic levels 17
1.3.5 Signal sources 17
1.4 Capacitors and ac circuits 18
1.4.1 Capacitors 18
1.4.2 RCcircuits:VandIversus time 21
1.4.3 Differentiators 25
1.4.4 Integrators 26
1.4.5 Not quite perfect. . . 28
1.5 Inductors and transformers 28
1.5.1 Inductors 28
1.5.2 Transformers 30
1.6 Diodes and diode circuits 31
1.6.1 Diodes 31
1.6.2 Rectification 31
1.6.3 Power-supply filtering 32
1.6.4 Rectifier configurations for
power supplies 33
1.6.5 Regulators 34
1.6.6 Circuit applications of diodes 35
1.6.7 Inductive loads and diode
protection 38
1.6.8 Interlude: inductors as friends 39
1.7 Impedance and reactance 40
1.7.1 Frequency analysis of reactive
circuits 41
1.7.2 Reactance of inductors 44
1.7.3 Voltages and currents as
complex numbers 44
1.7.4 Reactance of capacitors and
inductors 45
1.7.5 Ohm’s law generalized 46
1.7.6 Power in reactive circuits 47
1.7.7 Voltage dividers generalized 48
1.7.8 RChighpass filters 48
1.7.9 RClowpass filters 50
1.7.10 RCdifferentiators and
integrators in the frequency
domain 51
1.7.11 Inductors versus capacitors 51
1.7.12 Phasor diagrams 51
1.7.13 “Poles” and decibels per octave 52
1.7.14 Resonant circuits 52
1.7.15 LCfilters 54
1.7.16 Other capacitor applications 54
1.7.17 Th´ evenin’s theorem generalized 55
1.8 Putting it all together – an AM radio 55
1.9 Other passive components 56
1.9.1 Electromechanical devices:
switches 56
1.9.2 Electromechanical devices:
relays 59
1.9.3 Connectors 59
1.9.4 Indicators 61
1.9.5 Variable components 63
1.10 A parting shot: confusing markings and
itty-bitty components 64
1.10.1 Surface-mount technology: the
joy and the pain 65
ix
x Contents Art of Electronics Third Edition
Additional Exercises for Chapter 1 66
Review of Chapter 1 68
TWO: Bipolar Transistors 71
2.1 Introduction 71
2.1.1 First transistor model: current
amplifier 72
2.2 Some basic transistor circuits 73
2.2.1 Transistor switch 73
2.2.2 Switching circuit examples 75
2.2.3 Emitter follower 79
2.2.4 Emitter followers as voltage
regulators 82
2.2.5 Emitter follower biasing 83
2.2.6 Current source 85
2.2.7 Common-emitter amplifier 87
2.2.8 Unity-gain phase splitter 88
2.2.9 Transconductance 89
2.3 Ebers–Moll model applied to basic transistor circuits 90
2.3.1 Improved transistor model:
transconductance amplifier 90
2.3.2 Consequences of the
Ebers–Moll model: rules of
thumb for transistor design 91
2.3.3 The emitter follower revisited 93
2.3.4 The common-emitter amplifier
revisited 93
2.3.5 Biasing the common-emitter
amplifier 96
2.3.6 An aside: the perfect transistor 99
2.3.7 Current mirrors 101
2.3.8 Differential amplifiers 102
2.4 Some amplifier building blocks 105
2.4.1 Push–pull output stages 106
2.4.2 Darlington connection 109
2.4.3 Bootstrapping 111
2.4.4 Current sharing in paralleled
BJTs 112
2.4.5 Capacitance and Miller effect 113
2.4.6 Field-effect transistors 115
2.5 Negative feedback 115
2.5.1 Introduction to feedback 116
2.5.2 Gain equation 116
2.5.3 Effects of feedback on amplifier
circuits 117
2.5.4 Two important details 120
2.5.5 Two examples of transistor
amplifiers with feedback 121
2.6 Some typical transistor circuits 123
2.6.1 Regulated power supply 123
2.6.2 Temperature controller 123
2.6.3 Simple logic with transistors
and diodes 123
Additional Exercises for Chapter 2 124
Review of Chapter 2 126
THREE: Field-Effect Transistors 131
3.1 Introduction 131
3.1.1 FET characteristics 131
3.1.2 FET types 134
3.1.3 Universal FET characteristics 136
3.1.4 FET drain characteristics 137
3.1.5 Manufacturing spread of FET
characteristics 138
3.1.6 Basic FET circuits 140
3.2 FET linear circuits 141
3.2.1 Some representative JFETs: a
brief tour 141
3.2.2 JFET current sources 142
3.2.3 FET amplifiers 146
3.2.4 Differential amplifiers 152
3.2.5 Oscillators 155
3.2.6 Source followers 156
3.2.7 FETs as variable resistors 161
3.2.8 FET gate current 163
3.3 A closer look at JFETs 165
3.3.1 Drain current versus gate
voltage 165
3.3.2 Drain current versus
drain-source voltage: output
conductance 166
3.3.3 Transconductance versus drain
current 168
3.3.4 Transconductance versus drain
voltage 170
3.3.5 JFET capacitance 170
3.3.6 Why JFET (versus MOSFET)
amplifiers? 170
3.4 FET switches 171
3.4.1 FET analog switches 171
3.4.2 Limitations of FET switches 174
3.4.3 Some FET analog switch
examples 182
3.4.4 MOSFET logic switches 184
3.5 Power MOSFETs 187
3.5.1 High impedance, thermal
stability 187
3.5.2 Power MOSFET switching
parameters 192
Art of Electronics Third Edition Contents xi
3.5.3 Power switching from logic
levels 192
3.5.4 Power switching cautions 196
3.5.5 MOSFETs versus BJTs as
high-current switches 201
3.5.6 Some power MOSFET circuit
examples 202
3.5.7 IGBTs and other power
semiconductors 207
3.6 MOSFETs in linear applications 208
3.6.1 High-voltage piezo amplifier 208
3.6.2 Some depletion-mode circuits 209
3.6.3 Paralleling MOSFETs 212
3.6.4 Thermal runaway 214
Review of Chapter 3 219
FOUR: Operational Amplifiers 223
4.1 Introduction to op-amps – the “perfect
component” 223
4.1.1 Feedback and op-amps 223
4.1.2 Operational amplifiers 224
4.1.3 The golden rules 225
4.2 Basic op-amp circuits 225
4.2.1 Inverting amplifier 225
4.2.2 Noninverting amplifier 226
4.2.3 Follower 227
4.2.4 Difference amplifier 227
4.2.5 Current sources 228
4.2.6 Integrators 230
4.2.7 Basic cautions for op-amp
circuits 231
4.3 An op-amp smorgasbord 232
4.3.1 Linear circuits 232
4.3.2 Nonlinear circuits 236
4.3.3 Op-amp application:
triangle-wave oscillator 239
4.3.4 Op-amp application: pinch-off
voltage tester 240
4.3.5 Programmable pulse-width
generator 241
4.3.6 Active lowpass filter 241
4.4 A detailed look at op-amp behavior 242
4.4.1 Departure from ideal op-amp
performance 243
4.4.2 Effects of op-amp limitations on
circuit behavior 249
4.4.3 Example: sensitive
millivoltmeter 253
4.4.4 Bandwidth and the op-amp
current source 254
4.5 A detailed look at selected op-amp circuits 254
4.5.1 Active peak detector 254
4.5.2 Sample-and-hold 256
4.5.3 Active clamp 257
4.5.4 Absolute-value circuit 257
4.5.5 A closer look at the integrator 257
4.5.6 A circuit cure for FET leakage 259
4.5.7 Differentiators 260
4.6 Op-amp operation with a single power
supply 261
4.6.1 Biasing single-supply ac
amplifiers 261
4.6.2 Capacitive loads 264
4.6.3 “Single-supply” op-amps 265
4.6.4 Example: voltage-controlled
oscillator 267
4.6.5 VCO implementation:
through-hole versus
surface-mount 268
4.6.6 Zero-crossing detector 269
4.6.7 An op-amp table 270
4.7 Other amplifiers and op-amp types 270
4.8 Some typical op-amp circuits 274
4.8.1 General-purpose lab amplifier 274
4.8.2 Stuck-node tracer 276
4.8.3 Load-current-sensing circuit 277
4.8.4 Integrating suntan monitor 278
4.9 Feedback amplifier frequency compensation 280
4.9.1 Gain and phase shift versus
frequency 281
4.9.2 Amplifier compensation
methods 282
4.9.3 Frequency response of the
feedback network 284
Additional Exercises for Chapter 4 287
Review of Chapter 4 288
FIVE: Precision Circuits 292
5.1 Precision op-amp design techniques 292
5.1.1 Precision versus dynamic range 292
5.1.2 Error budget 293
5.2 An example: the millivoltmeter, revisited 293
5.2.1 The challenge: 10 mV, 1%,
10 MΩ, 1.8 V single supply 293
5.2.2 The solution: precision RRIO
current source 294
5.3 The lessons: error budget, unspecified parameters 295
xii Contents Art of Electronics Third Edition
5.4 Another example: precision amplifier with
null offset 297
5.4.1 Circuit description 297
5.5 A precision-design error budget 298
5.5.1 Error budget 299
5.6 Component errors 299
5.6.1 Gain-setting resistors 300
5.6.2 The holding capacitor 300
5.6.3 Nulling switch 300
5.7 Amplifier input errors 301
5.7.1 Input impedance 302
5.7.2 Input bias current 302
5.7.3 Voltage offset 304
5.7.4 Common-mode rejection 305
5.7.5 Power-supply rejection 306
5.7.6 Nulling amplifier: input errors 306
5.8 Amplifier output errors 307
5.8.1 Slew rate: general
considerations 307
5.8.2 Bandwidth and settling time 308
5.8.3 Crossover distortion and output
impedance 309
5.8.4 Unity-gain power buffers 311
5.8.5 Gain error 312
5.8.6 Gain nonlinearity 312
5.8.7 Phase error and “active
compensation” 314
5.9 RRIO op-amps: the good, the bad, and the
ugly 315
5.9.1 Input issues 316
5.9.2 Output issues 316
5.10 Choosing a precision op-amp 319
5.10.1 “Seven precision op-amps” 319
5.10.2 Number per package 322
5.10.3 Supply voltage, signal range 322
5.10.4 Single-supply operation 322
5.10.5 Offset voltage 323
5.10.6 Voltage noise 323
5.10.7 Bias current 325
5.10.8 Current noise 326
5.10.9 CMRR and PSRR 328
5.10.10 GBW,fT, slew rate and “m,”
and settling time 328
5.10.11 Distortion 329
5.10.12 “Two out of three isn’t bad”:
creating a perfect op-amp 332
5.11 Auto-zeroing (chopper-stabilized) amplifiers 333
5.11.1 Auto-zero op-amp properties 334
5.11.2 When to use auto-zero op-amps 338
5.11.3 Selecting an auto-zero op-amp 338
5.11.4 Auto-zero miscellany 340
5.12 Designs by the masters: Agilent’s accurate
DMMs 342
5.12.1 It’simpossible! 342
5.12.2 Wrong – itispossible! 342
5.12.3 Block diagram: a simple plan 343
5.12.4 The 34401A 6.5-digit front end 343
5.12.5 The 34420A 7.5-digit frontend 344
5.13 Difference, differential, and instrumentation amplifiers: introduction 347
5.14 Difference amplifier 348
5.14.1 Basic circuit operation 348
5.14.2 Some applications 349
5.14.3 Performance parameters 352
5.14.4 Circuit variations 355
5.15 Instrumentation amplifier 356
5.15.1 A first (but naive) guess 357
5.15.2 Classic three-op-amp
instrumentation amplifier 357
5.15.3 Input-stage considerations 358
5.15.4 A “roll-your-own”
instrumentation amplifier 359
5.15.5 A riff on robust input protection 362
5.16 Instrumentation amplifier miscellany 362
5.16.1 Input current and noise 362
5.16.2 Common-mode rejection 364
5.16.3 Source impedance and CMRR 365
5.16.4 EMI and input protection 365
5.16.5 Offset and CMRR trimming 366
5.16.6 Sensing at the load 366
5.16.7 Input bias path 366
5.16.8 Output voltage range 366
5.16.9 Application example: current
source 367
5.16.10 Other configurations 368
5.16.11 Chopper and auto-zero
instrumentation amplifiers 370
5.16.12 Programmable gain
instrumentation amplifiers 370
5.16.13 Generating a differential output 372
5.17 Fully differential amplifiers 373
5.17.1 Differential amplifiers: basic
concepts 374
5.17.2 Differential amplifier
application example: wideband
analog link 380
5.17.3 Differential-input ADCs 380
5.17.4 Impedance matching 382
Art of Electronics Third Edition Contents xiii
5.17.5 Differential amplifier selection
criteria 383
Review of Chapter 5 388
SIX: Filters 391
6.1 Introduction 391
6.2 Passive filters 391
6.2.1 Frequency response withRC
filters 391
6.2.2 Ideal performance withLC
filters 393
6.2.3 Several simple examples 393
6.2.4 Enter active filters: an overview 396
6.2.5 Key filter performance criteria 399
6.2.6 Filter types 400
6.2.7 Filter implementation 405
6.3 Active-filter circuits 406
6.3.1 VCVS circuits 407
6.3.2 VCVS filter design using our
simplified table 407
6.3.3 State-variable filters 410
6.3.4 Twin-T notch filters 414
6.3.5 Allpass filters 415
6.3.6 Switched-capacitor filters 415
6.3.7 Digital signal processing 418
6.3.8 Filter miscellany 422
Additional Exercises for Chapter 6 422
Review of Chapter 6 423
SEVEN: Oscillators and Timers 425
7.1 Oscillators 425
7.1.1 Introduction to oscillators 425
7.1.2 Relaxation oscillators 425
7.1.3 The classic oscillator–timer
chip: the 555 428
7.1.4 Other relaxation-oscillator ICs 432
7.1.5 Sinewave oscillators 435
7.1.6 Quartz-crystal oscillators 443
7.1.7 Higher stability: TCXO,
OCXO, and beyond 450
7.1.8 Frequency synthesis: DDS and
PLL 451
7.1.9 Quadrature oscillators 453
7.1.10 Oscillator “jitter” 457
7.2 Timers 457
7.2.1 Step-triggered pulses 458
7.2.2 Monostable multivibrators 461
7.2.3 A monostable application:
limiting pulse width and duty
cycle 465
7.2.4 Timing with digital counters 465
Review of Chapter 7 470
EIGHT: Low-Noise Techniques 473
8.1 ‘‘Noise” 473
8.1.1 Johnson (Nyquist) noise 474
8.1.2 Shot noise 475
8.1.3 1/f noise (flicker noise) 476
8.1.4 Burst noise 477
8.1.5 Band-limited noise 477
8.1.6 Interference 478
8.2 Signal-to-noise ratio and noise figure 478
8.2.1 Noise power density and
bandwidth 479
8.2.2 Signal-to-noise ratio 479
8.2.3 Noise figure 479
8.2.4 Noise temperature 480
8.3 Bipolar transistor amplifier noise 481
8.3.1 Voltage noise,en 481
8.3.2 Current noisein 483
8.3.3 BJT voltage noise, revisited 484
8.3.4 A simple design example:
loudspeaker as microphone 486
8.3.5 Shot noise in current sources
and emitter followers 487
8.4 Finding en from noise-figure specifications 489
8.4.1 Step 1: NF versusIC 489
8.4.2 Step 2: NF versusRs 489
8.4.3 Step 3: getting toen 490
8.4.4 Step 4: the spectrum ofen 491
8.4.5 The spectrum ofin 491
8.4.6 When operating current is not
your choice 491
8.5 Low-noise design with bipolar transistors 492
8.5.1 Noise-figure example 492
8.5.2 Charting amplifier noise withen
andin 493
8.5.3 Noise resistance 494
8.5.4 Charting comparative noise 495
8.5.5 Low-noise design with BJTs:
two examples 495
8.5.6 Minimizing noise: BJTs, FETs,
and transformers 496
8.5.7 A design example: 40¢
“lightning detector” preamp 497
8.5.8 Selecting a low-noise bipolar
transistor 500
8.5.9 An extreme low-noise design
challenge 505
xiv Contents Art of Electronics Third Edition
8.6 Low-noise design with JFETS 509
8.6.1 Voltage noise of JFETs 509
8.6.2 Current noise of JFETs 511
8.6.3 Design example: low-noise
wideband JFET “hybrid”
amplifiers 512
8.6.4 Designs by the masters: SR560
low-noise preamplifier 512
8.6.5 Selecting low-noise JFETS 515
8.7 Charting the bipolar–FET shootout 517
8.7.1 What about MOSFETs? 519
8.8 Noise in differential and feedback amplifiers 520
8.9 Noise in operational amplifier circuits 521
8.9.1 Guide to Table 8.3: choosing
low-noise op-amps 525
8.9.2 Power-supply rejection ratio 533
8.9.3 Wrapup: choosing a low-noise
op-amp 533
8.9.4 Low-noise instrumentation
amplifiers and video amplifiers 533
8.9.5 Low-noise hybrid op-amps 534
8.10 Signal transformers 535
8.10.1 A low-noise wideband amplifier
with transformer feedback 536
8.11 Noise in transimpedance amplifiers 537
8.11.1 Summary of the stability
problem 537
8.11.2 Amplifier input noise 538
8.11.3 TheenCnoise problem 538
8.11.4 Noise in the transresistance
amplifier 539
8.11.5 An example: wideband JFET
photodiode amplifier 540
8.11.6 Noise versus gain in the
transimpedance amplifier 540
8.11.7 Output bandwidth limiting in
the transimpedance amplifier 542
8.11.8 Composite transimpedance
amplifiers 543
8.11.9 Reducing input capacitance:
bootstrapping the
transimpedance amplifier 547
8.11.10 Isolating input capacitance:
cascoding the transimpedance
amplifier 548
8.11.11 Transimpedance amplifiers with
capacitive feedback 552
8.11.12 Scanning tunneling microscope
preamplifier 553
8.11.13 Test fixture for compensation
and calibration 554
8.11.14 A final remark 555
8.12 Noise measurements and noise sources 555
8.12.1 Measurement without a noise
source 555
8.12.2 An example: transistor-noise
test circuit 556
8.12.3 Measurement with a noise
source 556
8.12.4 Noise and signal sources 558
8.13 Bandwidth limiting and rms voltage measurement 561
8.13.1 Limiting the bandwidth 561
8.13.2 Calculating the integrated noise 563
8.13.3 Op-amp “low-frequency noise”
with asymmetric filter 564
8.13.4 Finding the 1/f corner frequency 566
8.13.5 Measuring the noise voltage 567
8.13.6 Measuring the noise current 569
8.13.7 Another way: roll-your-own
fA/

Hzinstrument 571
8.13.8 Noise potpourri 574
8.14 Signal-to-noise improvement by bandwidth narrowing 574
8.14.1 Lock-in detection 575
8.15 Power-supply noise 578
8.15.1 Capacitance multiplier 578
8.16 Interference, shielding, and grounding 579
8.16.1 Interfering signals 579
8.16.2 Signal grounds 582
8.16.3 Grounding between instruments 583
Additional Exercises for Chapter 8 588
Review of Chapter 8 590
NINE: Voltage Regulation and Power Conversion 594
9.1 Tutorial: from zener to series-pass linear
regulator 595
9.1.1 Adding feedback 596
9.2 Basic linear regulator circuits with the
classic 723 598
9.2.1 The 723 regulator 598
9.2.2 In defense of the beleaguered
723 600
9.3 Fully integrated linear regulators 600
9.3.1 Taxonomy of linear regulator
ICs 601
9.3.2 Three-terminal fixed regulators 601
Art of Electronics Third Edition Contents xv
9.3.3 Three-terminal adjustable
regulators 602
9.3.4 317-style regulator: application
hints 604
9.3.5 317-style regulator: circuit
examples 608
9.3.6 Lower-dropout regulators 610
9.3.7 True low-dropout regulators 611
9.3.8 Current-reference 3-terminal
regulator 611
9.3.9 Dropout voltages compared 612
9.3.10 Dual-voltage regulator circuit
example 613
9.3.11 Linear regulator choices 613
9.3.12 Linear regulator idiosyncrasies 613
9.3.13 Noise and ripple filtering 619
9.3.14 Current sources 620
9.4 Heat and power design 623
9.4.1 Power transistors and
heatsinking 624
9.4.2 Safe operating area 627
9.5 From ac line to unregulated supply 628
9.5.1 ac-line components 629
9.5.2 Transformer 632
9.5.3 dc components 633
9.5.4 Unregulated split supply – on
the bench! 634
9.5.5 Linear versus switcher: ripple
and noise 635
9.6 Switching regulators and dc–dc converters 636
9.6.1 Linear versus switching 636
9.6.2 Switching converter topologies 638
9.6.3 Inductorless switching
converters 638
9.6.4 Converters with inductors: the
basic non-isolated topologies 641
9.6.5 Step-down (buck) converter 642
9.6.6 Step-up (boost) converter 647
9.6.7 Inverting converter 648
9.6.8 Comments on the non-isolated
converters 649
9.6.9 Voltage mode and current mode 651
9.6.10 Converters with transformers:
the basic designs 653
9.6.11 The flyback converter 655
9.6.12 Forward converters 656
9.6.13 Bridge converters 659
9.7 Ac-line-powered (“offline”) switching
converters 660
9.7.1 The ac-to-dc input stage 660
9.7.2 The dc-to-dc converter 662
9.8 A real-world switcher example 665
9.8.1 Switchers: top-level view 665
9.8.2 Switchers: basic operation 665
9.8.3 Switchers: looking more closely 668
9.8.4 The “reference design” 671
9.8.5 Wrapup: general comments on
line-powered switching power
supplies 672
9.8.6 When to use switchers 672
9.9 Inverters and switching amplifiers 673
9.10 Voltage references 674
9.10.1 Zener diode 674
9.10.2 Bandgap (VBE) reference 679
9.10.3 JFET pinch-off (VP) reference 680
9.10.4 Floating-gate reference 681
9.10.5 Three-terminal precision
references 681
9.10.6 Voltage reference noise 682
9.10.7 Voltage references: additional
Comments 683
9.11 Commercial power-supply modules 684
9.12 Energy storage: batteries and capacitors 686
9.12.1 Battery characteristics 687
9.12.2 Choosing a battery 688
9.12.3 Energy storage in capacitors 688
9.13 Additional topics in power regulation 690
9.13.1 Overvoltage crowbars 690
9.13.2 Extending input-voltage range 693
9.13.3 Foldback current limiting 693
9.13.4 Outboard pass transistor 695
9.13.5 High-voltage regulators 695
Review of Chapter 9 699
TEN: Digital Logic 703
10.1 Basic logic concepts 703
10.1.1 Digital versus analog 703
10.1.2 Logic states 704
10.1.3 Number codes 705
10.1.4 Gates and truth tables 708
10.1.5 Discrete circuits for gates 711
10.1.6 Gate-logic example 712
10.1.7 Assertion-level logic notation 713
10.2 Digital integrated circuits: CMOS and
Bipolar (TTL) 714
10.2.1 Catalog of common gates 715
10.2.2 IC gate circuits 717
10.2.3 CMOS and bipolar (“TTL”)
characteristics 718
xvi Contents Art of Electronics Third Edition
10.2.4 Three-state and open-collector
devices 720
10.3 Combinational logic 722
10.3.1 Logic identities 722
10.3.2 Minimization and Karnaugh
maps 723
10.3.3 Combinational functions
available as ICs 724
10.4 Sequential logic 728
10.4.1 Devices with memory: flip-flops 728
10.4.2 Clocked flip-flops 730
10.4.3 Combining memory and gates:
sequential logic 734
10.4.4 Synchronizer 737
10.4.5 Monostable multivibrator 739
10.4.6 Single-pulse generation with
flip-flops and counters 739
10.5 Sequential functions available as integrated circuits 740
10.5.1 Latches and registers 740
10.5.2 Counters 741
10.5.3 Shift registers 744
10.5.4 Programmable logic devices 745
10.5.5 Miscellaneous sequential
functions 746
10.6 Some typical digital circuits 748
10.6.1 Modulo-ncounter: a timing
example 748
10.6.2 Multiplexed LED digital display 751
10.6.3 Ann-pulse generator 752
10.7 Micropower digital design 753
10.7.1 Keeping CMOS low power 754
10.8 Logic pathology 755
10.8.1 dc problems 755
10.8.2 Switching problems 756
10.8.3 Congenital weaknesses of TTL
and CMOS 758
Additional Exercises for Chapter 10 760
Review of Chapter 10 762
ELEVEN: Programmable Logic Devices 764
11.1 A brief history 764
11.2 The hardware 765
11.2.1 The basic PAL 765
11.2.2 The PLA 768
11.2.3 The FPGA 768
11.2.4 The configuration memory 769
11.2.5 Other programmable logic
devices 769
11.2.6 The software 769
11.3 An example: pseudorandom byte generator 770
11.3.1 How to make pseudorandom
bytes 771
11.3.2 Implementation in standard
logic 772
11.3.3 Implementation with
programmable logic 772
11.3.4 Programmable logic – HDL
entry 775
11.3.5 Implementation with a
microcontroller 777
11.4 Advice 782
11.4.1 ByTechnologies 782
11.4.2 ByUser Communities 785
Review of Chapter 11 787
TWELVE: Logic Interfacing 790
12.1 CMOS and TTL logic interfacing 790
12.1.1 Logic family chronology – a
brief history 790
12.1.2 Input and output characteristics 794
12.1.3 Interfacing between logic
families 798
12.1.4 Driving digital logic inputs 802
12.1.5 Input protection 804
12.1.6 Some comments about logic
inputs 805
12.1.7 Driving digital logic from
comparators or op-amps 806
12.2 An aside: probing digital signals 808
12.3 Comparators 809
12.3.1 Outputs 810
12.3.2 Inputs 812
12.3.3 Other parameters 815
12.3.4 Other cautions 816
12.4 Driving external digital loads from logic
levels 817
12.4.1 Positive loads: direct drive 817
12.4.2 Positive loads: transistor
assisted 820
12.4.3 Negative or ac loads 821
12.4.4 Protecting power switches 823
12.4.5 nMOS LSI interfacing 826
12.5 Optoelectronics: emitters 829
12.5.1 Indicators and LEDs 829
12.5.2 Laser diodes 834
12.5.3 Displays 836
12.6 Optoelectronics: detectors 840
Art of Electronics Third Edition Contents xvii
12.6.1 Photodiodes and
phototransistors 841
12.6.2 Photomultipliers 842
12.7 Optocouplers and relays 843
12.7.1 I: Phototransistor output
optocouplers 844
12.7.2 II: Logic-output optocouplers 844
12.7.3 III: Gate driver optocouplers 846
12.7.4 IV: Analog-oriented
optocouplers 847
12.7.5 V: Solid-state relays (transistor
output) 848
12.7.6 VI: Solid-state relays (triac/SCR
output) 849
12.7.7 VII: ac-input optocouplers 851
12.7.8 Interrupters 851
12.8 Optoelectronics: fiber-optic digital links 852
12.8.1 TOSLINK 852
12.8.2 Versatile Link 854
12.8.3 ST/SC glass-fiber modules 855
12.8.4 Fully integrated high-speed
fiber-transceiver modules 855
12.9 Digital signals and long wires 856
12.9.1 On-board interconnections 856
12.9.2 Intercard connections 858
12.10 Driving Cables 858
12.10.1 Coaxial cable 858
12.10.2 The right way – I: Far-end
termination 860
12.10.3 Differential-pair cable 864
12.10.4 RS-232 871
12.10.5 Wrapup 874
Review of Chapter 12 875
THIRTEEN : Digital meets Analog 879
13.1 Some preliminaries 879
13.1.1 The basic performance
parameters 879
13.1.2 Codes 880
13.1.3 Converter errors 880
13.1.4 Stand-alone versus integrated 880
13.2 Digital-to-analog converters 881
13.2.1 Resistor-string DACs 881
13.2.2 R–2Rladder DACs 882
13.2.3 Current-steering DACs 883
13.2.4 Multiplying DACs 884
13.2.5 Generating a voltage output 885
13.2.6 Six DACs 886
13.2.7 Delta–sigma DACs 888
13.2.8 PWM as digital-to-analog
converter 888
13.2.9 Frequency-to-voltage converters 890
13.2.10 Rate multiplier 890
13.2.11 Choosing a DAC 891
13.3 Some DAC application examples 891
13.3.1 General-purpose laboratory
source 891
13.3.2 Eight-channel source 893
13.3.3 Nanoamp wide-compliance
bipolarity current source 894
13.3.4 Precision coil driver 897
13.4 Converter linearity – a closer look 899
13.5 Analog-to-digital converters 900
13.5.1 Digitizing: aliasing, sampling
rate, and sampling depth 900
13.5.2 ADC Technologies 902
13.6 ADCs I: Parallel (“flash”) encoder 903
13.6.1 Modified flash encoders 903
13.6.2 Driving flash, folding, and RF
ADCs 904
13.6.3 Undersampling flash-converter
example 907
13.7 ADCs II: Successive approximation 908
13.7.1 A simple SAR example 909
13.7.2 Variations on successive
approximation 909
13.7.3 An A/D conversion example 910
13.8 ADCs III: integrating 912
13.8.1 Voltage-to-frequency
conversion 912
13.8.2 Single-slope integration 914
13.8.3 Integrating converters 914
13.8.4 Dual-slope integration 914
13.8.5 Analog switches in conversion
applications (a detour) 916
13.8.6 Designs by the masters:
Agilent’s world-class
“multislope” converters 918
13.9 ADCs IV: delta–sigma 922
13.9.1 A simple delta–sigma for our
suntan monitor 922
13.9.2 Demystifying the delta–sigma
converter 923
13.9.3 ΔΣADC and DAC 923
13.9.4 TheΔΣprocess 924
13.9.5 An aside: “noise shaping” 927
13.9.6 The bottom line 928
13.9.7 A simulation 928
13.9.8 What about DACs? 930
xviii Contents Art of Electronics Third Edition
13.9.9 Pros and Cons ofΔΣ
oversampling converters 931
13.9.10 Idle tones 932
13.9.11 Some delta–sigma application
examples 932
13.10 ADCs: choices and tradeoffs 938
13.10.1 Delta–sigma and the
competition 938
13.10.2 Sampling versus averaging
ADCs: noise 940
13.10.3 Micropower A/D converters 941
13.11 Some unusual A/D and D/A converters 942
13.11.1 ADE7753 multifunction ac
power metering IC 943
13.11.2 AD7873 touchscreen digitizer 944
13.11.3 AD7927 ADC with sequencer 945
13.11.4 AD7730 precision
bridge-measurement subsystem 945
13.12 Some A/D conversion system examples 946
13.12.1 Multiplexed 16-channel
data-acquisition system 946
13.12.2 Parallel multichannel
successive-approximation
data-acquisition system 950
13.12.3 Parallel multichannel
delta–sigma data-acquisition
system 952
13.13 Phase-locked loops 955
13.13.1 Introduction to phase-locked
loops 955
13.13.2 PLL components 957
13.13.3 PLL design 960
13.13.4 Design example: frequency
multiplier 961
13.13.5 PLL capture and lock 964
13.13.6 Some PLL applications 966
13.13.7 Wrapup: noise and jitter
rejection in PLLs 974
13.14 Pseudorandom bit sequences and noise
generation 974
13.14.1 Digital-noise generation 974
13.14.2 Feedback shift register
sequences 975
13.14.3 Analog noise generation from
maximal-length sequences 977
13.14.4 Power spectrum of shift-register
sequences 977
13.14.5 Low-pass filtering 979
13.14.6 Wrapup 981
13.14.7 “True” random noise generators 982
13.14.8 A “hybrid digital filter” 983
Additional Exercises for Chapter 13 984
Review of Chapter 13 985
FOURTEEN: Computers, Controllers, and
Data Links 989
14.1 Computer architecture: CPU and data bus 990
14.1.1 CPU 990
14.1.2 Memory 991
14.1.3 Mass memory 991
14.1.4 Graphics, network, parallel, and
serial ports 992
14.1.5 Real-time I/O 992
14.1.6 Data bus 992
14.2 A computer instruction set 993
14.2.1 Assembly language and
machine language 993
14.2.2 Simplified “x86” instruction set 993
14.2.3 A programming example 996
14.3 Bus signals and interfacing 997
14.3.1 Fundamental bus signals: data,
address, strobe 997
14.3.2 Programmed I/O: data out 998
14.3.3 Programming theXYvector
display 1000
14.3.4 Programmed I/O: data in 1001
14.3.5 Programmed I/O: status
registers 1002
14.3.6 Programmed I/O: command
registers 1004
14.3.7 Interrupts 1005
14.3.8 Interrupt handling 1006
14.3.9 Interrupts in general 1008
14.3.10 Direct memory access 1010
14.3.11 Summary of PC104/ISA 8-bit
bus signals 1012
14.3.12 The PC104 as an embedded
single-board computer 1013
14.4 Memory types 1014
14.4.1 Volatile and non-volatile
memory 1014
14.4.2 Static versus dynamic RAM 1015
14.4.3 Static RAM 1016
14.4.4 Dynamic RAM 1018
14.4.5 Nonvolatile memory 1021
14.4.6 Memory wrapup 1026
14.5 Other buses and data links: overview 1027
14.6 Parallel buses and data links 1028
14.6.1 Parallel chip “bus” interface –
an example 1028
Art of Electronics Third Edition Contents xix
14.6.2 Parallel chip data links – two
high-speed examples 1030
14.6.3 Other parallel computer buses 1030
14.6.4 Parallel peripheral buses and
data links 1031
14.7 Serial buses and data links 1032
14.7.1 SPI 1032
14.7.2 I
2
C 2-wire interface (“TWI”) 1034
14.7.3 Dallas–Maxim “1-wire” serial
interface 1035
14.7.4 JTAG 1036
14.7.5 Clock-be-gone: clock recovery 1037
14.7.6 SATA, eSATA, and SAS 1037
14.7.7 PCI Express 1037
14.7.8 Asynchronous serial (RS-232,
RS-485) 1038
14.7.9 Manchester coding 1039
14.7.10 Biphase coding 1041
14.7.11 RLL binary: bit stuffing 1041
14.7.12 RLL coding: 8b/10b and others 1041
14.7.13 USB 1042
14.7.14 FireWire 1042
14.7.15 Controller Area Network
(CAN) 1043
14.7.16 Ethernet 1045
14.8 Number formats 1046
14.8.1 Integers 1046
14.8.2 Floating-point numbers 1047
Review of Chapter 14 1049
FIFTEEN: Microcontrollers 1053
15.1 Introduction 1053
15.2 Design example 1: suntan monitor (V) 1054
15.2.1 Implementation with a
microcontroller 1054
15.2.2 Microcontroller code
(“firmware”) 1056
15.3 Overview of popular microcontroller families 1059
15.3.1 On-chip peripherals 1061
15.4 Design example 2: ac power control 1062
15.4.1 Microcontroller implementation 1062
15.4.2 Microcontroller code 1064
15.5 Design example 3: frequency synthesizer 1065
15.5.1 Microcontroller code 1067
15.6 Design example 4: thermal controller 1069
15.6.1 The hardware 1070
15.6.2 The control loop 1074
15.6.3 Microcontroller code 1075
15.7 Design example 5: stabilized mechanical
platform 1077
15.8 Peripheral ICs for microcontrollers 1078
15.8.1 Peripherals with direct
connection 1079
15.8.2 Peripherals with SPI connection 1082
15.8.3 Peripherals with I
2
C connection 1084
15.8.4 Some important hardware
constraints 1086
15.9 Development environment 1086
15.9.1 Software 1086
15.9.2 Real-time programming
constraints 1088
15.9.3 Hardware 1089
15.9.4 The Arduino Project 1092
15.10 Wrapup 1092
15.10.1 How expensive are the tools? 1092
15.10.2 When to use microcontrollers 1093
15.10.3 How to select a microcontroller 1094
15.10.4 A parting shot 1094
Review of Chapter 15 1095
APPENDIX A: Math Review 1097
A.1 Trigonometry, exponentials, and logarithms 1097
A.2 Complex numbers 1097
A.3 Differentiation (Calculus) 1099
A.3.1 Derivatives of some common
functions 1099
A.3.2 Some rules for combining
derivatives 1100
A.3.3 Some examples of
differentiation 1100
APPENDIX B: How to Draw Schematic Diagrams 1101
B.1 General principles 1101
B.2 Rules 1101
B.3 Hints 1103
B.4 A humble example 1103
APPENDIX C: Resistor Types 1104
C.1 Some history 1104
C.2 Available resistance values 1104
C.3 Resistance marking 1105
C.4 Resistor types 1105
C.5 Confusion derby 1105
APPENDIX D: Th´ evenin’s Theorem 1107
D.1 The proof 1107
xx Contents Art of Electronics Third Edition
D.1.1 Two examples – voltage
dividers 1107
D.2 Norton’s theorem 1108
D.3 Another example 1108
D.4 Millman’s theorem 1108
APPENDIX E: LC Butterworth Filters 1109
E.1 Lowpass filter 1109
E.2 Highpass filter 1109
E.3 Filter examples 1109
APPENDIX F: Load Lines 1112
F.1 An example 1112
F.2 Three-terminal devices 1112
F.3 Nonlinear devices 1113
APPENDIX G: The Curve Tracer 1115
APPENDIX H: Transmission Lines and
Impedance Matching 1116
H.1 Some properties of transmission lines 1116
H.1.1 Characteristic impedance 1116
H.1.2 Termination: pulses 1117
H.1.3 Termination: sinusoidal signals 1120
H.1.4 Loss in transmission lines 1121
H.2 Impedance matching 1122
H.2.1 Resistive (lossy) broadband
matching network 1123
H.2.2 Resistive attenuator 1123
H.2.3 Transformer (lossless)
broadband matching network 1124
H.2.4 Reactive (lossless) narrowband
matching networks 1125
H.3 Lumped-element delay lines and pulseforming networks 1126
H.4 Epilogue: ladder derivation of characteristic impedance 1127
H.4.1 First method: terminated line 1127
H.4.2 Second method: semi-infinite
line 1127
H.4.3 Postscript: lumped-element
delay lines 1128
APPENDIX I: Television: A Compact Tutorial 1131
I.1 Television: video plus audio 1131
I.1.1 The audio 1131
I.1.2 The video 1132
I.2 Combining and sending the audio + video:
modulation 1133
I.3 Recording analog-format broadcast or cable television 1135
I.4 Digital television: what is it? 1136
I.5 Digital television: broadcast and cable delivery 1138
I.6 Direct satellite television 1139
I.7 Digital video streaming over internet 1140
I.8 Digital cable: premium services and conditional access 1141
I.8.1 Digital cable: video-on-demand 1141
I.8.2 Digital cable: switched
broadcast 1142
I.9 Recording digital television 1142
I.10 Display technology 1142
I.11 Video connections: analog and digital 1143
APPENDIX J: SPICE Primer 1146
J.1 Setting up ICAP SPICE 1146
J.2 Entering a Diagram 1146
J.3 Running a simulation 1146
J.3.1 Schematic entry 1146
J.3.2 Simulation: frequency sweep 1147
J.3.3 Simulation: input and output
waveforms 1147
J.4 Some final points 1148
J.5 A detailed example: exploring amplifier
distortion 1148
J.6 Expanding the parts database 1149
APPENDIX K: “Where Do I Go to Buy Electronic Goodies?” 1150
APPENDIX L: Workbench Instruments and
Tools 1152
APPENDIX M: Catalogs, Magazines, Databooks 1153
APPENDIX N: Further Reading and References 1154
APPENDIX O: The Oscilloscope 1158
O.1 The analog oscilloscope 1158
O.1.1 Vertical 1158
O.1.2 Horizontal 1158
O.1.3 Triggering 1159
O.1.4 Hints for beginners 1160
O.1.5 Probes 1160
O.1.6 Grounds 1161
O.1.7 Other analog scope features 1161
O.2 The digital oscilloscope 1162
Art of Electronics Third Edition Contents xxi
O.2.1 What’s different? 1162
O.2.2 Some cautions 1164
APPENDIX P: Acronyms and Abbreviations 1166

LINK DOWNLOAD
M_tả

No comments: