EBOOK - AUTOMATIC CONTROL For Mechanical Engineers (M. Galal RABIE)


EBOOK - Điều khiển tự động trong kỹ thuật cơ khí (M. Galal RABIE).

Automatic control plays an important role in the advance of engineering and science. It is of extreme importance inmost of the engineering fields; such as the aerospace engineering, chemical engineering, robotic systems, automotive and mobile equipment engineering aswell as manufacturing and industrial processes. Automatic control provides the means of understanding the problems of stability and precision of dynamic systems. Actually most engineers must have good understanding of this field.


CONTENTS:

CHAPTER 1: INTRODUCTION TO AUTOMATIC CONTROL  1
1.1 INTRODUCTION  1
1.2 SYSTEM DEFINITION  1
1.3 SYSTEM CONTROL  3
1.3.1 Open Loop Control  3
1.3.2 Closed Loop (Feedback) Control  5
1.4 SYSTEM REPRESENTATION  8
1.4.1 Schematic Diagrams  8
1.4.2 Mathematical Model  8
1.4.3 Transfer Function  9
1.4.4 Block Diagram  10
1.4.5 Signal Flow Graph  10
1.4.6 State Space Representation  10
1.4.7 Bond Graph  11
1.5 SYSTEM ANALYSIS  12
1.6 EXERCISE  12
CHAPTER 2: MATHEMATICAL TOPICS  13
2.1 INTRODUCTION  13
2.2 DIFFERENTIAL EQUATIONS  13
2.3 LAPLACE TRANSFORM  17
2.3.1 Direct Laplace Transform  17
2.3.2 Inverse Laplace Transform  18
2.3.3 Properties of Laplace Transform  18
2.3.4 Partial Fraction Expansion  20
2.3.5 Solving Differential Equations Using Laplace Transform  22
2.4 COMPLEX VARIABLES  24
2.5 LAPLACE TRANSFORM TABLES  25
2.6 EXERCISE  25
CHAPTER 3: TRANSFER FUNCTIONS  29
3.1 BASIC DEFINITIONS  29
3.2 TRANSFER FUNCTION OFSOME BASIC ELEMENTS  31
3.2.1 ProportionalElement  31
3.2.2 Integrating Elements  32
3.2.2.1 Ideal hydraulic cylinder  32
3.2.2.2 Valve controlled actuator  33
3.2.3 First Order Element  35
3.2.3.1 Hydraulic servo actuator  35
M Galal RABIE, Automatic Controlfor Mechanical Engineers
3.2.3.2 Resistance-capacitance network  36
3.2.4 Second Order Element  37
3.3 EXERCISE  38
CHAPTER 4: BLOCK DIAGRAM  43
4.1 INTRODUCTION  43
4.2 CONVENTIONS FOR BLOCK DIAGRAMS  43
4.3 DEDUCING SYSTEM TRANSFER FUNCTION  44
4.4 BLOCK DIAGRAM ALGEBRA  46
4.5 EXERCISE  50
CHAPTER 5: SIGNAL FLOW GRAPH  53
5.1 INTRODUCTION  53
5.2 CONVENTIONS FOR SIGNAL FLOW GRAPHS  53
5.3 MASON'S FORMULA  56
5.4 EXERCISE  60
CHAPTER 6: TIME DOMAIN ANALYSIS  63
6.1 INTRODUCTION  63
6.2 TIME RESPONSE OFBASIC ELEMENTS  65
6.2.1 Integrating Member  65
6.2.1.1 Response to step input  65
6.2.1.2 Response to ramp input  66
6.2.1.3 Response to input impulse  66
6.2.2 First Order Element  66
6.2.2.1 Step response  66
6.2.2.2 Response to ramp input  67
6.2.2.3 Response to input impulse  68
6.2.3 Second Order Element  69
6.2.3.1 Step response of second order element  69
6.2.3.1.1 Step response of over-damped 2
6.2.3.1.2 Step response of critically-damped 2
6.2.3.1.3 Step response of under-damped 2
6.2.3.1.4 Step response of un-damped 2
6.2.3.2 Response of second order element to ramp input  76
6.2.3.3 Response of second order element input impulse  77
6.2.4 Third and Higher Order Systems  78
6.2.5 Effect of Root Location  79
6.3 TRANSIENT RESPONSE CHARACTERISTICS  81
6.4 STEP RESPONSE TESTING OF PRACTICAL SYSTEMS  83
6.4.1 Response Apparently of First Order  83
6.4.2 Response Apparently of Under Damped Second Order  84
M Galal RABIE, Automatic Controlfor Mechanical Engineers
6.5 EXERCISE  85
CHAPTER 7: FREQUENCY RESPONSE  91
7.1 INTRODUCTION  91
7.2 CALCULATION OF THE FREQUENCY RESPONSE  93
7.3 POLAR PLOT (NYQUIST DIAGRAM)  95
7.3.1 Polar Plot for First Order Element  95
7.3.2 Polar Plot of Second Order Element  96
7.3.3 Polar Plot of Integrating Member  98
7.3.4 Polar Plot of Higher Order Elements  98
7.4 BODE DIAGRAM  99
7.4.1 Introduction  99
7.4.2 Bode Plot of Basic Elements  101
7.4.2.1 Proportional Element  101
7.4.2.2 Integrating Element  101
7.4.2.3 First order element (simple lag)  102
7.4.2.4 Simple lead element  104
7.4.2.5 Second order element  104
7.4.2.6 Quadraticlead element  106
7.5 NICHOL'S CHART  108
7.6 EXERCISE  109
CHAPTER 8: FEEDBACK SYSTEM ACCURACY AND STABILITY  113
8.1 INTRODUCTION  113
8.2 STEADY STATE ERROR  113
8.2.1 Steady State Error with Step Input  114
8.2.2 Steady State Error with Ramp Input  116
8.3 STABILITY OF FEEDBACK SYSTEMS  117
8.3.1 Routh-Hurwitz Stability Criterion  117
8.3.2 Nyquist Stability Criterion  120
8.3.2.1 Stability analysis using Nyquist plot  120
8.3.2.2 Stability analysis using Bode plot  129
8.3.2.3 Stability analysis using Nichol's chart  130
8.4 EXERCISE  131
CHAPTER 9: ROOT LOCUS ANALYSIS  137
9.1 INTRODUCTION  137
9.2 INTERPRETATION OF ROOT LOCUS  138
9.3 EXERCISE  144
CHAPTER 10: COMPENSATION OF CONTROL SYSTEMS  147
10.1 INTRODUCTION  147
M Galal RABIE, Automatic Controlfor Mechanical Engineers
10.2 PHASE LEAD COMPENSATOR  150
10.3 PHASE LAG COMPENSATOR  153
10.4 LAG-LEAD COMPENSATOR  155
10.5 P, PI AND PID CONTROLLERS  157
10.6 EXERCISE  162
REFERENCES  163

LINK DOWNLOAD


EBOOK - Điều khiển tự động trong kỹ thuật cơ khí (M. Galal RABIE).

Automatic control plays an important role in the advance of engineering and science. It is of extreme importance inmost of the engineering fields; such as the aerospace engineering, chemical engineering, robotic systems, automotive and mobile equipment engineering aswell as manufacturing and industrial processes. Automatic control provides the means of understanding the problems of stability and precision of dynamic systems. Actually most engineers must have good understanding of this field.


CONTENTS:

CHAPTER 1: INTRODUCTION TO AUTOMATIC CONTROL  1
1.1 INTRODUCTION  1
1.2 SYSTEM DEFINITION  1
1.3 SYSTEM CONTROL  3
1.3.1 Open Loop Control  3
1.3.2 Closed Loop (Feedback) Control  5
1.4 SYSTEM REPRESENTATION  8
1.4.1 Schematic Diagrams  8
1.4.2 Mathematical Model  8
1.4.3 Transfer Function  9
1.4.4 Block Diagram  10
1.4.5 Signal Flow Graph  10
1.4.6 State Space Representation  10
1.4.7 Bond Graph  11
1.5 SYSTEM ANALYSIS  12
1.6 EXERCISE  12
CHAPTER 2: MATHEMATICAL TOPICS  13
2.1 INTRODUCTION  13
2.2 DIFFERENTIAL EQUATIONS  13
2.3 LAPLACE TRANSFORM  17
2.3.1 Direct Laplace Transform  17
2.3.2 Inverse Laplace Transform  18
2.3.3 Properties of Laplace Transform  18
2.3.4 Partial Fraction Expansion  20
2.3.5 Solving Differential Equations Using Laplace Transform  22
2.4 COMPLEX VARIABLES  24
2.5 LAPLACE TRANSFORM TABLES  25
2.6 EXERCISE  25
CHAPTER 3: TRANSFER FUNCTIONS  29
3.1 BASIC DEFINITIONS  29
3.2 TRANSFER FUNCTION OFSOME BASIC ELEMENTS  31
3.2.1 ProportionalElement  31
3.2.2 Integrating Elements  32
3.2.2.1 Ideal hydraulic cylinder  32
3.2.2.2 Valve controlled actuator  33
3.2.3 First Order Element  35
3.2.3.1 Hydraulic servo actuator  35
M Galal RABIE, Automatic Controlfor Mechanical Engineers
3.2.3.2 Resistance-capacitance network  36
3.2.4 Second Order Element  37
3.3 EXERCISE  38
CHAPTER 4: BLOCK DIAGRAM  43
4.1 INTRODUCTION  43
4.2 CONVENTIONS FOR BLOCK DIAGRAMS  43
4.3 DEDUCING SYSTEM TRANSFER FUNCTION  44
4.4 BLOCK DIAGRAM ALGEBRA  46
4.5 EXERCISE  50
CHAPTER 5: SIGNAL FLOW GRAPH  53
5.1 INTRODUCTION  53
5.2 CONVENTIONS FOR SIGNAL FLOW GRAPHS  53
5.3 MASON'S FORMULA  56
5.4 EXERCISE  60
CHAPTER 6: TIME DOMAIN ANALYSIS  63
6.1 INTRODUCTION  63
6.2 TIME RESPONSE OFBASIC ELEMENTS  65
6.2.1 Integrating Member  65
6.2.1.1 Response to step input  65
6.2.1.2 Response to ramp input  66
6.2.1.3 Response to input impulse  66
6.2.2 First Order Element  66
6.2.2.1 Step response  66
6.2.2.2 Response to ramp input  67
6.2.2.3 Response to input impulse  68
6.2.3 Second Order Element  69
6.2.3.1 Step response of second order element  69
6.2.3.1.1 Step response of over-damped 2
6.2.3.1.2 Step response of critically-damped 2
6.2.3.1.3 Step response of under-damped 2
6.2.3.1.4 Step response of un-damped 2
6.2.3.2 Response of second order element to ramp input  76
6.2.3.3 Response of second order element input impulse  77
6.2.4 Third and Higher Order Systems  78
6.2.5 Effect of Root Location  79
6.3 TRANSIENT RESPONSE CHARACTERISTICS  81
6.4 STEP RESPONSE TESTING OF PRACTICAL SYSTEMS  83
6.4.1 Response Apparently of First Order  83
6.4.2 Response Apparently of Under Damped Second Order  84
M Galal RABIE, Automatic Controlfor Mechanical Engineers
6.5 EXERCISE  85
CHAPTER 7: FREQUENCY RESPONSE  91
7.1 INTRODUCTION  91
7.2 CALCULATION OF THE FREQUENCY RESPONSE  93
7.3 POLAR PLOT (NYQUIST DIAGRAM)  95
7.3.1 Polar Plot for First Order Element  95
7.3.2 Polar Plot of Second Order Element  96
7.3.3 Polar Plot of Integrating Member  98
7.3.4 Polar Plot of Higher Order Elements  98
7.4 BODE DIAGRAM  99
7.4.1 Introduction  99
7.4.2 Bode Plot of Basic Elements  101
7.4.2.1 Proportional Element  101
7.4.2.2 Integrating Element  101
7.4.2.3 First order element (simple lag)  102
7.4.2.4 Simple lead element  104
7.4.2.5 Second order element  104
7.4.2.6 Quadraticlead element  106
7.5 NICHOL'S CHART  108
7.6 EXERCISE  109
CHAPTER 8: FEEDBACK SYSTEM ACCURACY AND STABILITY  113
8.1 INTRODUCTION  113
8.2 STEADY STATE ERROR  113
8.2.1 Steady State Error with Step Input  114
8.2.2 Steady State Error with Ramp Input  116
8.3 STABILITY OF FEEDBACK SYSTEMS  117
8.3.1 Routh-Hurwitz Stability Criterion  117
8.3.2 Nyquist Stability Criterion  120
8.3.2.1 Stability analysis using Nyquist plot  120
8.3.2.2 Stability analysis using Bode plot  129
8.3.2.3 Stability analysis using Nichol's chart  130
8.4 EXERCISE  131
CHAPTER 9: ROOT LOCUS ANALYSIS  137
9.1 INTRODUCTION  137
9.2 INTERPRETATION OF ROOT LOCUS  138
9.3 EXERCISE  144
CHAPTER 10: COMPENSATION OF CONTROL SYSTEMS  147
10.1 INTRODUCTION  147
M Galal RABIE, Automatic Controlfor Mechanical Engineers
10.2 PHASE LEAD COMPENSATOR  150
10.3 PHASE LAG COMPENSATOR  153
10.4 LAG-LEAD COMPENSATOR  155
10.5 P, PI AND PID CONTROLLERS  157
10.6 EXERCISE  162
REFERENCES  163

LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: