Nhận dạng và phân loại hoa quả trong ảnh màu



Hiện nay, ở nước ta nói riêng và ở các nước đang phát triển có nền nông nghiệp là một trong các ngành sản xuất chủ yếu, quá trình thu hoạch, phân loại và đánh giá chất lượng các loại sản phẩm nông nghiệp, đặc biệt là các loại hoa quả, chủ yếu còn phải thực hiện bằng các phương pháp thủ công. Đây là công việc không quá khó, nhưng tiêu tốn nhiều thời gian, công sức của con người và là rào cản đối với mở rộng phát triển quy mô sản xuất nông nghiệp. Do đó, nhiều phương pháp tự động hóa công việc thu hoạch, nhận dạng và đánh giá chất lượng hoa quả đã được nghiên cứu và đưa vào ứng dụng thực tế, trong đó sử dụng chủ yếu các phương pháp Xử lý ảnh đơn thuần. Tuy nhiên, các phương pháp này vẫn chưa thực sự thỏa mãn yêu cầu về khả năng nhận dạng một số lượng lớn các loại hoa quả với độ chính xác cao do bị hạn chế bởi các đặc trưng của bài toán nhận dạng hoa quả: số lượng chủng loại lớn với nhiều loại hoa quả hết sức tương tự nhau, sự biến thiên về hình dạng, màu sắc, chi tiết trong từng loại quả cũng rất khó dự đoán trước…

Trong thời gian gần đây, nhờ có sự phát triển mạnh mẽ về khả năng tính toán của các thế hệ máy tính hiện đại cũng như sự bùng nổ về dữ liệu thông qua mạng lưới Internet trải rộng, ta đã chứng kiến nhiều sự đột phá trong lĩnh vực Học máy, đặc biệt là trong lĩnh vực Thị giác máy tính. Sự quay lại và phát triển vượt bậc của các phương pháp Học

sâu đã giúp Thị giác máy tính đạt được những thành tựu đáng kể trong lĩnh vực Nhận dạng ảnh, trong đó có bài toán nhận dạng hoa quả. Đề tài nghiên cứu “Nhận dạng và phần loại hoa quả trong ảnh màu” đã được đưa ra với hy vọng có thể ứng dụng thành công các mô hình học sâu hiện đại để xây dựng một hệ thống nhận dạng hoa quả tự động, đặc biệt là đối với các loại hoa quả phổ biến tại nước ta.


2. Mục tiêu của luận văn


Do thời gian hạn chế trong thời gian thực hiện nghiên cứu, luận văn trước hết tập trung nghiên cứu, tìm hiểu và so sánh các phương pháp Học máy truyền thống với phương pháp Học sâu, đồng thời thực hiện cài đặt một mô hình huấn luyện về nhận dạng ảnh trong Học sâu với số lượng hoa quả được hạn chế, và sử dụng chúng làm bộ nhận dạng cơ sở cho ứng dụng hỗ trợ nhận dạng hoa quả trên điện thoại thông minh.

2.1. Cơ sở dữ liệu ảnh hoa quả Bộ cơ sở dữ liệu ảnh là một trong các thành phần quan trọng hàng đầu trong các phương pháp Học máy nói chung, được sử dụng để phục vụ cho quá trình tính toán tham số và huấn luyện, tinh chỉnh các mô hình. Thông thường, bộ dữ liệu càng lớn và càng được chọn lọc tỉ mỉ cẩn thận thì độ chính xác của mô hình càng được cải thiện, nhưng trong phạm vi luận văn này kích thước CSDL sẽ được hạn chế, cả về số lượng loại hoa quả sẽ nhận dạng cũng như số lượng ảnh chụp cho mỗi loại hoa quả đó. Cụ thể:

- Số lượng hoa quả sẽ nhận dạng: 40 loại hoa quả phổ biến ở nước ta như nho, táo, chuối, thanh long…

- Số lượng ảnh gốc cho mỗi loại quả: 500-1000 ảnh, bao gồm các ảnh chụp hoa quả ở các góc độ khác nhau với nền tùy ý, có thể lấy từ nguồn trên mạng hoặc tự chụp bằng thiết bị camera cá nhân.

Sau khi đã thu thập đủ số lượng ảnh gốc cho các loại hoa quả, ta sẽ sử dụng các thuật toán chỉnh sửa ảnh, như làm nghiêng ảnh, chèn thêm nhiễu hoặc ghép ảnh với nền khác, để tạo thêm ảnh mới nhằm tăng cường kích thước cơ sở dữ liệu.


LINK DOWNLOAD



Hiện nay, ở nước ta nói riêng và ở các nước đang phát triển có nền nông nghiệp là một trong các ngành sản xuất chủ yếu, quá trình thu hoạch, phân loại và đánh giá chất lượng các loại sản phẩm nông nghiệp, đặc biệt là các loại hoa quả, chủ yếu còn phải thực hiện bằng các phương pháp thủ công. Đây là công việc không quá khó, nhưng tiêu tốn nhiều thời gian, công sức của con người và là rào cản đối với mở rộng phát triển quy mô sản xuất nông nghiệp. Do đó, nhiều phương pháp tự động hóa công việc thu hoạch, nhận dạng và đánh giá chất lượng hoa quả đã được nghiên cứu và đưa vào ứng dụng thực tế, trong đó sử dụng chủ yếu các phương pháp Xử lý ảnh đơn thuần. Tuy nhiên, các phương pháp này vẫn chưa thực sự thỏa mãn yêu cầu về khả năng nhận dạng một số lượng lớn các loại hoa quả với độ chính xác cao do bị hạn chế bởi các đặc trưng của bài toán nhận dạng hoa quả: số lượng chủng loại lớn với nhiều loại hoa quả hết sức tương tự nhau, sự biến thiên về hình dạng, màu sắc, chi tiết trong từng loại quả cũng rất khó dự đoán trước…

Trong thời gian gần đây, nhờ có sự phát triển mạnh mẽ về khả năng tính toán của các thế hệ máy tính hiện đại cũng như sự bùng nổ về dữ liệu thông qua mạng lưới Internet trải rộng, ta đã chứng kiến nhiều sự đột phá trong lĩnh vực Học máy, đặc biệt là trong lĩnh vực Thị giác máy tính. Sự quay lại và phát triển vượt bậc của các phương pháp Học

sâu đã giúp Thị giác máy tính đạt được những thành tựu đáng kể trong lĩnh vực Nhận dạng ảnh, trong đó có bài toán nhận dạng hoa quả. Đề tài nghiên cứu “Nhận dạng và phần loại hoa quả trong ảnh màu” đã được đưa ra với hy vọng có thể ứng dụng thành công các mô hình học sâu hiện đại để xây dựng một hệ thống nhận dạng hoa quả tự động, đặc biệt là đối với các loại hoa quả phổ biến tại nước ta.


2. Mục tiêu của luận văn


Do thời gian hạn chế trong thời gian thực hiện nghiên cứu, luận văn trước hết tập trung nghiên cứu, tìm hiểu và so sánh các phương pháp Học máy truyền thống với phương pháp Học sâu, đồng thời thực hiện cài đặt một mô hình huấn luyện về nhận dạng ảnh trong Học sâu với số lượng hoa quả được hạn chế, và sử dụng chúng làm bộ nhận dạng cơ sở cho ứng dụng hỗ trợ nhận dạng hoa quả trên điện thoại thông minh.

2.1. Cơ sở dữ liệu ảnh hoa quả Bộ cơ sở dữ liệu ảnh là một trong các thành phần quan trọng hàng đầu trong các phương pháp Học máy nói chung, được sử dụng để phục vụ cho quá trình tính toán tham số và huấn luyện, tinh chỉnh các mô hình. Thông thường, bộ dữ liệu càng lớn và càng được chọn lọc tỉ mỉ cẩn thận thì độ chính xác của mô hình càng được cải thiện, nhưng trong phạm vi luận văn này kích thước CSDL sẽ được hạn chế, cả về số lượng loại hoa quả sẽ nhận dạng cũng như số lượng ảnh chụp cho mỗi loại hoa quả đó. Cụ thể:

- Số lượng hoa quả sẽ nhận dạng: 40 loại hoa quả phổ biến ở nước ta như nho, táo, chuối, thanh long…

- Số lượng ảnh gốc cho mỗi loại quả: 500-1000 ảnh, bao gồm các ảnh chụp hoa quả ở các góc độ khác nhau với nền tùy ý, có thể lấy từ nguồn trên mạng hoặc tự chụp bằng thiết bị camera cá nhân.

Sau khi đã thu thập đủ số lượng ảnh gốc cho các loại hoa quả, ta sẽ sử dụng các thuật toán chỉnh sửa ảnh, như làm nghiêng ảnh, chèn thêm nhiễu hoặc ghép ảnh với nền khác, để tạo thêm ảnh mới nhằm tăng cường kích thước cơ sở dữ liệu.


LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: