Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full

 

Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full

Chương trình môn Vật lí nói chung, môn Cơ học và lí thuyết nói riêng ở bậc đại học tương đối phong phú và đa dạng. Để  học tốt được các môn vật lí lí thuyết mỗi sinh viên vần phải trang bị  cho mình không những kiến thức về  vật lí mà còn phải chuẩn bị  thêm cho  mình kiến thức về  toán giải tích, phương trình vi phân, phương trình đạo hàm riêng, phương pháp toán lí. Chính vì vậy mà các sinh viên gặp rất nhiều khó khăn trong quá trình học tập môn Cơ học và lý thuyết tương đối. 

Nhiều sinh viên sau khi đã học xong môn Cơ học và lí thuyết tương đối đếu không thể  vận dụng các kiến thức mới, phương pháp m ới vào để  giải các bài toán động lực học, đặc biệt là các bài tập về dao động và dao động điện.

Hiện nay tại thư viện trường Đại học Tây Bắc có rất ít đề  tài và khóa luận nghiên cứu về  vấn đề  này. Các giáo trình viết về  vấn đề  dao động thì  sử  dụng phương pháp dùng các định luật Newton,..  để  xây dựng các kiến thức cần thiết. 

Trong các giáo trình đó đã trình bày phương pháp giản đồ véc tơ để  giải các bài toán về  dao động    phương pháp này hay, ngắn gọn nhưng  chưa mang tính khái quát cao. Sử dụng phương pháp ấy chỉ giải quyết được một số bài toán đơn giản, trong nhiều  trường hợp không thể  giải quyết được. Nhiều bài toán về  phương trình  Lagrange  rất  phức  tạp  vì  vậy  tôi  đã  chọn  khóa  luận  “Phương  trình Lagrange  và  phương  pháp  giải một  số  bài  tập”.  Trong  khóa  luận  này  tôi  đã thống kê những kiến thức cơ bản về hàm Lagrange, bên cạnh đó để người đọc dễ hiểu thì tôi có dựa vào hàm Lagrange để giải một số các bài tập về dao động.Tôi mong rằng khóa luận này sẽ  là tài liệu tham khảo hữu ích cho các bạn sinh viên và các giáo viên giảng dạy môn vật lý ở trường phổ thông


NỘI DUNG:



A. PHẦN MỞ ĐẦU ............................................................................................. 1

1. Lý do chọn đề tài ............................................................................................... 1

2. Mục đích ............................................................................................................ 2

3. Nhiệm vụ ........................................................................................................... 2

4. Giả thuyết khoa học........................................................................................... 2

5. Đối tượng nghiên cứu ........................................................................................ 2

6. Phương pháp nghiên cứu ................................................................................... 2

7. Đóng góp của khóa luận .................................................................................... 2

B: PHẦN NỘI DUNG ......................................................................................... 3

CHƢƠNG I: CƠ SỞ LÍ LUẬN .......................................................................... 3

1.1. Tổng quát ........................................................................................................ 3

1.1.1. Tọa độ suy rộng ........................................................................................... 3

1.1.2. Dịch chuyển ảo ............................................................................................ 3

1.1.3. Công ảo ....................................................................................................... 4

1.1.4. Liên kết lí tưởng .......................................................................................... 4

1.2. Lí thuyết về phương trình Lagrange loại II .................................................... 4

1.2.1 Nguyên lý dalambert – lagrange .................................................................. 4

1.2.2 Phương trình lagrange loại II ....................................................................... 4

CHƢƠNG II: MỘT SỐ BÀI TẬP VÀ PHƢƠNG PHÁP GIẢI ..................... 8

2.1. Dao động của con lắc lò xo ............................................................................ 8

2.1.1. Phương trình vi phân ................................................................................... 8

2.1.2. Nghiệm của phương trình vi phân............................................................... 9

2.1.3. Trường hợp suy biến ................................................................................. 10

2.1.4.Vận dụng .................................................................................................... 10

2.2. Dao động cưỡng bức của con lắc lò xo ........................................................ 15

2.2.1. Phương trình vi phân ................................................................................. 15

2.2.2. Nghiệm của phương trình vi phân............................................................. 16

2.2.3. Cộng hưởng ............................................................................................... 20

2.2.4. Vận dụng ................................................................................................... 23

2.3. Dao động của con lắc đơn ............................................................................ 27

2.3.1. Dao động tự do của con lắc đơn ................................................................ 27

2.3.2. Dao động của con lắc đơn khi vật chịu thêm tác dụng của một lực lạ ..... 28

2.3.3. Con lắc vật lý ............................................................................................. 34

2.3.4. Vận dụng ................................................................................................... 34

CHƢƠNG III: BÀI TẬP VỀ PHƢƠNG TRÌNH LAGRANGE VÀ MỘT

SỐ BÀI TẬP TỰ GIẢI ..................................................................................... 38

C: PHẦN KẾT LUẬN ...................................................................................... 42

TÀI LIỆU THAM KHẢO










LINK DOWNLOAD (TÀI LIỆU VIP MEMBER)

Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full
Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full Phương trình lagrange và phương pháp giải một số bài tập (Nguyễn Thị Phượng) Full

Không có nhận xét nào: