Video

SÁCH - Giáo trình trang bị điện (Đỗ Chí Phi) Full




Trang bị điện là môn học đòi hỏi sinh viên phải biết vận dụng lý thuyết các môn học như: khí cụ điện, máy điện, truyền động điện, trang bị điện...để thiết kế và phân tích mạch điện.




Trang bị điện là môn học đòi hỏi sinh viên phải biết vận dụng lý thuyết các môn học như: khí cụ điện, máy điện, truyền động điện, trang bị điện...để thiết kế và phân tích mạch điện.

M_tả

M_tả

ĐỒ ÁN - Công nghệ chế tạo bánh răng côn - Huỳnh Anh Thắng (Thuyết minh + Bản vẽ) Full



Đặc điểm bánh răng côn. 

  Cặp bánh răng côn dùng để truyền chuyển động quay giữa hai trục giao nhau. 

  Răng của bánh răng côn được cắt trên mặt côn của phôi. Khi các bánh răng côn quay ăn khớp với nhau, các mặt côn lăn lăn không trượt trên nhau.  

  Chiều dày và chiều cao của răng không cố định: chúng giảm dần theo 

hướng tới đỉnh côn. Nhờ đó mà môđun của các bánh răng côn cũng thay đổi. 

 



Đặc điểm bánh răng côn. 

  Cặp bánh răng côn dùng để truyền chuyển động quay giữa hai trục giao nhau. 

  Răng của bánh răng côn được cắt trên mặt côn của phôi. Khi các bánh răng côn quay ăn khớp với nhau, các mặt côn lăn lăn không trượt trên nhau.  

  Chiều dày và chiều cao của răng không cố định: chúng giảm dần theo 

hướng tới đỉnh côn. Nhờ đó mà môđun của các bánh răng côn cũng thay đổi. 

 

M_tả

M_tả

Bản vẽ chế tạo chi tiết bánh răng côn liền trục tham khảo

M_tả

M_tả

SÁCH - KỸ THUẬT SẢN XUẤT ĐIỆN HÓA (Nguyễn Đình Phổ)



Cuốn sách KỸ THUẬT SẢN XUẤT ĐIỆN HÓA nhằm trang bị những kiến thức cơ bản về cơ sở kỹ thuật sản xuất điện hóa, cơ sở tính toán vật chất và năng lượng cho quá trình sản xuất, những minh họa cụ thể về các quá trình cung cấp và thu năng lượng và một số bài tập kèm theo.



Cuốn sách KỸ THUẬT SẢN XUẤT ĐIỆN HÓA nhằm trang bị những kiến thức cơ bản về cơ sở kỹ thuật sản xuất điện hóa, cơ sở tính toán vật chất và năng lượng cho quá trình sản xuất, những minh họa cụ thể về các quá trình cung cấp và thu năng lượng và một số bài tập kèm theo.

M_tả

M_tả
Chuyên mục:

Giáo trình Thiết bị gia dụng (Nghề: Điện công nghiệp - Trình độ: Cao đẳng) (Trường CĐ Công Nghiệp Hải Phòng)



Bố trí sao cho phù hợp với điều kiện sử dụng của từng căn phòng. Các bóng đèn phải bố trí sao cho đủ sáng( tuỳ theo khu vục chiếu sáng), ánh sánh phải đều khắp phòng. Bảng điện bố trí ở vị trí thuận lợi( thường bố trí ở cửa ra vào). Quạt phải bố trí sao cho bóng của quạt không ảnh hưởng đến người sử dụng. -Xác định phụ tải. Lựa chọn số lượng và công suất bóng đèn. Ở bước thiết kế sơ bộ, hoặc đối với đối tượng chiếu sáng không yêu cầu độ chính xác cao. Có thể dùng phương pháp gần đúng. Lấy công suất chiếu sáng P0, W/m2 sao cho phù hợp với yêu cầu của khách hàng hoặc đối tượng chiếu sáng.



Bố trí sao cho phù hợp với điều kiện sử dụng của từng căn phòng. Các bóng đèn phải bố trí sao cho đủ sáng( tuỳ theo khu vục chiếu sáng), ánh sánh phải đều khắp phòng. Bảng điện bố trí ở vị trí thuận lợi( thường bố trí ở cửa ra vào). Quạt phải bố trí sao cho bóng của quạt không ảnh hưởng đến người sử dụng. -Xác định phụ tải. Lựa chọn số lượng và công suất bóng đèn. Ở bước thiết kế sơ bộ, hoặc đối với đối tượng chiếu sáng không yêu cầu độ chính xác cao. Có thể dùng phương pháp gần đúng. Lấy công suất chiếu sáng P0, W/m2 sao cho phù hợp với yêu cầu của khách hàng hoặc đối tượng chiếu sáng.

M_tả

M_tả
Chuyên mục:

EBOOK - Statistics - The Conceptual Approach - Full Edition (Gudmund R. Iversen & Mary Gergen)



Thống kê - Phương pháp tiếp cận khái niệm (Gudmund R. Iversen & Mary Gergen)


discussed in this book. It is clear that with an understanding of the main ideas of statistics, engaged citizens can grasp what the professional number crunchers have produced and evaluate the results. This book grew out of a course designed by Gudmund R. Iversen to meet the challenges created by this greater reliance on statistical It was one of a series of courses designed at Swarthmore information. College to fulfill the mission of a liberal arts college to educate its students for the challenges of the twenty-first century. The idea was that students should not become so involved with the intricacies of a single discipline that they lose sight of the big picture. These courses were intended to educate students to understand how the major ideas of a field relate to the world. In many respects statistics seemed an ideal subject for one such course. While statistics could be a mystifying, self­ aggrandized, and esoteric discipline, it could also be a key to under­ standing many other disciplines. The course, Stat 1: Statistical Think­ ing, was created to produce this understanding. The course proved to be very popular, and each year it grew in size. Over time the lecture notes for the course became more refined and extensive, and eventu­ ally the course material served as the basis for this book. Fonnulas As most statistics instructors are keenly aware, the teaching of statistics has changed dramatically.



Thống kê - Phương pháp tiếp cận khái niệm (Gudmund R. Iversen & Mary Gergen)


discussed in this book. It is clear that with an understanding of the main ideas of statistics, engaged citizens can grasp what the professional number crunchers have produced and evaluate the results. This book grew out of a course designed by Gudmund R. Iversen to meet the challenges created by this greater reliance on statistical It was one of a series of courses designed at Swarthmore information. College to fulfill the mission of a liberal arts college to educate its students for the challenges of the twenty-first century. The idea was that students should not become so involved with the intricacies of a single discipline that they lose sight of the big picture. These courses were intended to educate students to understand how the major ideas of a field relate to the world. In many respects statistics seemed an ideal subject for one such course. While statistics could be a mystifying, self­ aggrandized, and esoteric discipline, it could also be a key to under­ standing many other disciplines. The course, Stat 1: Statistical Think­ ing, was created to produce this understanding. The course proved to be very popular, and each year it grew in size. Over time the lecture notes for the course became more refined and extensive, and eventu­ ally the course material served as the basis for this book. Fonnulas As most statistics instructors are keenly aware, the teaching of statistics has changed dramatically.

M_tả

M_tả
Chuyên mục:

EBOOK - Sentence Comprehension The Integration of Habits and Rules (Language, Speech, and Communication) - Full Edition (David J. Townsend & Thomas G. Bever)



Using sentence comprehension as a case study for all of cognitive science, David Townsend and Thomas Bever offer an integration of two major approaches, the symbolic-computational and the associative-connectionist. The symbolic-computational approach emphasizes the formal manipulation of symbols that underlies creative aspects of language behavior. The associative-connectionist approach captures the intuition that most behaviors consist of accumulated habits. The authors argue that the sentence is the natural level at which associative and symbolic information merge during comprehension.



Using sentence comprehension as a case study for all of cognitive science, David Townsend and Thomas Bever offer an integration of two major approaches, the symbolic-computational and the associative-connectionist. The symbolic-computational approach emphasizes the formal manipulation of symbols that underlies creative aspects of language behavior. The associative-connectionist approach captures the intuition that most behaviors consist of accumulated habits. The authors argue that the sentence is the natural level at which associative and symbolic information merge during comprehension.

M_tả

M_tả

Language Processing as Cue Integration : Grounding the Psychology of Language in Perception and Neurophysiology



I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.


Introduction

Despite major advances in the last decades of language research, the linking hypothesis between ever-more plausible neurobiological models of language and ever-better empirically supported psycholinguistic models is weak, if not absent. Moreover, we are struggling to answer, and even to ask well, questions like why is language behavior the way it is? How is language processed? What is “processing difficulty?” What is the source of difficulty in psychological and neurobiological terms? What can it tell us about the computational architecture of the language system? These questions, however frustratingly difficult, speak to our persistent awe at the fact that we humans flap our articulators, we move the air, and in doing so, stimulate formally-describable complex meaning in the heads of other people. And then those people usually do it to us back. So how do we, or rather, our brains, do it?


There must be a good reason for the weak link between psycho- and neurobiological theories of language—namely that it is really hard to find a concept that would be explanatory on multiple levels of analysis in cognitive science (see Marr, 1982). Questions like what makes language the way it is probe the computational level of Marr's tri-level hypothesis, asking what the system's goal is, what computation is being performed and to what end. Questions like how does the system do it occur at the algorithmic level, asking what the nature of the mechanism that carries out the computation is. Recent debates in cognitive science have cast these two kinds of questions in opposition, or at least, in opposing theoretical camps. Bayesian modelers of perception and cognition form the statistical what camp, and non-Bayesians the mechanistic how camp (Jones and Love, 2011; Bowers and Davis, 2012). The what camp is purportedly less interested in how the mind “does it,” but is focused on reverse engineering how the natural world (or the statistics that describe it) makes cognition the way it is. The how camp purportedly wants to uncover the mechanism that the mind/brain uses, instead of a statistical approximation (Jones and Love, 2011; Bowers and Davis, 2012). I will argue that any model of language computation must answer both how and what questions, and the best model will most likely include both mechanistic and probabilistic elements. The model articulated here asserts a mechanistic psychological operation over representations derived via Bayesian inference (or an approximation there of), which are represented by neural population codes that are flexibly combined using two simple canonical neural computations: summation and normalization.



I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.


Introduction

Despite major advances in the last decades of language research, the linking hypothesis between ever-more plausible neurobiological models of language and ever-better empirically supported psycholinguistic models is weak, if not absent. Moreover, we are struggling to answer, and even to ask well, questions like why is language behavior the way it is? How is language processed? What is “processing difficulty?” What is the source of difficulty in psychological and neurobiological terms? What can it tell us about the computational architecture of the language system? These questions, however frustratingly difficult, speak to our persistent awe at the fact that we humans flap our articulators, we move the air, and in doing so, stimulate formally-describable complex meaning in the heads of other people. And then those people usually do it to us back. So how do we, or rather, our brains, do it?


There must be a good reason for the weak link between psycho- and neurobiological theories of language—namely that it is really hard to find a concept that would be explanatory on multiple levels of analysis in cognitive science (see Marr, 1982). Questions like what makes language the way it is probe the computational level of Marr's tri-level hypothesis, asking what the system's goal is, what computation is being performed and to what end. Questions like how does the system do it occur at the algorithmic level, asking what the nature of the mechanism that carries out the computation is. Recent debates in cognitive science have cast these two kinds of questions in opposition, or at least, in opposing theoretical camps. Bayesian modelers of perception and cognition form the statistical what camp, and non-Bayesians the mechanistic how camp (Jones and Love, 2011; Bowers and Davis, 2012). The what camp is purportedly less interested in how the mind “does it,” but is focused on reverse engineering how the natural world (or the statistics that describe it) makes cognition the way it is. The how camp purportedly wants to uncover the mechanism that the mind/brain uses, instead of a statistical approximation (Jones and Love, 2011; Bowers and Davis, 2012). I will argue that any model of language computation must answer both how and what questions, and the best model will most likely include both mechanistic and probabilistic elements. The model articulated here asserts a mechanistic psychological operation over representations derived via Bayesian inference (or an approximation there of), which are represented by neural population codes that are flexibly combined using two simple canonical neural computations: summation and normalization.

M_tả

M_tả
Chuyên mục:

ĐA TRUY NHẬP VÔ TUYẾN (WIRELESS MULTIPLE ACCESS) - CHƯƠNG 5 OFDMA & NOMA (Trần Trung Duy)

 



OFDM 

- Orthogonal Frequency Division Multiplexing  

- Ghép kênh phân chia theo tần số trực giao 

- R.W CHANG, năm 1966 tại Mỹ 

 



OFDM 

- Orthogonal Frequency Division Multiplexing  

- Ghép kênh phân chia theo tần số trực giao 

- R.W CHANG, năm 1966 tại Mỹ 

M_tả

M_tả

A predictive coding framework for rapid neural dynamics during sentence-level language comprehension



There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. 



There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. 

M_tả

M_tả